2505.19995v1 [cs.DC] 26 May 2025

arxXiv

Optimizing edge AI models on HPC systems with
the edge in the loop

Marcel AaChl[0000_0002_7861_0672], CyI‘ﬂ BlanCQ[0000—0003—3271—2398]7 Andreas
Lintermannl[0000_0003_3321_6599], and Kurt De Grave2 [0000—0001—-9116—6986]

b Jiilich Supercomputing Centre, Jiilich, Germany m.aach@fz-juelich.de,
a.lintermann@fz-juelich.de
2 ProductionS core lab, Flanders Make, Lommel/Leuven, Belgium
cyril.blanc@flandersmake.be, kurt.degrave@flandersmake.be

Abstract. Artificial Intelligence (AI) and Machine Learning (ML) mod-
els deployed on edge devices, e.g., for quality control in Additive Man-
ufacturing (AM), are frequently small in size. Such models usually have
to deliver highly accurate results within a short time frame. Methods
that are commonly employed in literature start out with larger trained
models and try to reduce their memory and latency footprint by struc-
tural pruning, knowledge distillation, or quantization. It is, however, also
possible to leverage hardware-aware Neural Architecture Search (NAS),
an approach that seeks to systematically explore the architecture space
to find optimized configurations. In this study, a hardware-aware NAS
workflow is introduced that couples an edge device located in Belgium
with a powerful High-Performance Computing (HPC) system in Ger-
many, to train possible architecture candidates as fast as possible while
performing real-time latency measurements on the target hardware. The
approach is verified on a use case in the AM domain, based on the open
RAISE-LPBF dataset, achieving =~ 8.8 times faster inference speed while
simultaneously enhancing model quality by a factor of &~ 1.35, compared
to a human-designed baseline.

Keywords: Hyperparameter Optimization - Edge Computing - High-
Performance Computing - Deep Learning - Computer Vision

1 Introduction

Deploying Machine Learning (ML) models on edge devices presents unique chal-
lenges, as these systems must deliver high accuracy while operating under strict
memory and latency constraints. Edge Artificial Intelligence (Al) is widely used
in applications requiring real-time decision-making. This includes industrial au-
tomation and process monitoring, where traditionally post-training optimization
approaches like pruning and quantization are applied.

An alternative is hardware-aware Neural Architecture Search (NAS), which sys-
tematically explores model architectures to find a best-suited configuration for

2 M. Aach, C. Blanc, A. Lintermann, and K. De Grave

a given hardware platform. This study introduces a NAS workflow that pairs an
edge device located in Belgium with a High-Performance Computing (HPC) sys-
tem in Germany. This setup accelerates model training while simultaneously op-
timizing inference speed on the target hardware, ensuring a practical, improved,
and efficient deployment. The corresponding code of the HPC2Edge workflow is
available open-source on GitHuH?}

The approach is validated with a Laser Powder Bed Fusion (LPBF) application,
an industrial Additive Manufacturing (AM) process that fabricates metal parts.
Real-time anomaly detection is essential for preventing defects and reducing
waste. The method uses a 20 kHz high-speed camera and a Neural Network
(NN)-based video regression model to predict laser parameters. Deviations of the
predicted laser parameters from ground-truth laser parameters indicate process
anomalies [3]. For training and evaluation of the method, the RAISE-LPBF-
Laser dataset (vl.l)ﬁ [2], consisting of high-speed camera frames paired with
various laser parameters, is used. Optimizing inference speed without sacrificing
accuracy is key. Deploying the NAS-optimized model presented in this study on
an edge device ensures seamless vision integration on any LPBF machine, while
improving efficiency and reliability.

The paper is structured as follows: Sec. [2] summarizes the related work on
hardware-aware NAS, Sec. [3| describes the developed workflow in detail, and
Sec. [4] presents the empirical results. Finally, Sec. [5] provides a summary and a
conclusion.

2 Related Work on Hardware-Aware NAS

To leverage high-performing ML and Al models in a practical setting on resource-
limited edge devices, two approaches exist. On the one hand, an already op-
timized model is compressed to fit on the hardware, e.g., by quantization or
structural pruning. On the other hand, hardware-aware NAS seeks to find the
optimal building blocks for a model and then constructs its architecture from
scratch. While in regular NAS the objective is to find the best performing NN
architectures in terms of accuracy, hardware-aware NAS is inherently multi-
objective as not only the accuracy of a model but also factors such as the model
size and inference speed are of high relevance. Several methods for performing
hardware-aware NAS for different types of edge devices have already been intro-
duced in the literature and are summarized in the following, based on a general
overview of the field in [I]. Facebook-Berkeley-Nets (FBNets) [I4], a family of
convolutional architectures for use on mobile devices were discovered using a dif-
ferential NAS approach and outperformed human crafted architectures (such as
MobileNets [5]) at the time in terms of speed and accuracy. FNAS [6] leverages
hardware-aware NAS for creating NN architectures that meet the specifications

3 HPC2Edge GitHub: https://github.com/Flanders-Make-vzw/HPC2edge
4 RAISE-LPBF-Laser dataset: https://www.makebench.eu

https://github.com/Flanders-Make-vzw/HPC2edge
https://www.makebench.eu

Optimizing edge Al models on HPC systems with the edge in the loop 3

of Field Programmable Gate Arrays (FPGAs). It uses a multi-objective rein-
forcement learning NAS approach [I5], where the latency of an architecture
candidate is estimated and only verified after the NAS run on the target FPGA.
The Microcontroller Unit Network (MCUNet) in [9] focuses on microcontroller
units, which feature even smaller memory than mobile phones. It also leverages a
two stage process, where the NAS search space is first refined, such that all pos-
sible candidates fit the resource constraints of the edge device. Then, the NAS
for the architecture with the best accuracy is launched. The memory footprint
and the Floating Point Operation (FLOP) performance are calculated not on the
edge device. From an optimization technique point of view, also Evolutionary
Algorithms (EA) are a strong choice [4]. In EA, an initial population is sampled
randomly. Subsequent generations are iteratively obtained from the previous one
through selection (biased for fitness), mutations, and usually also crossover, i.e.,
sex. Measurement of fitness, which requires fully training the NNs candidates is
here the expensive step.

A critical aspect of hardware-aware NAS is accurately measuring hardware costs.
While the number of parameters and FLOPs required for the inference of an ar-
chitecture candidate can be easily estimated, it has been shown that other quan-
tities of interest, such as the inference time, cannot be reliably derived from these.
This is, for instance, the case on different types of edge devices and especially
relevant when Graphics Processing Units (GPUs) are used [§]. For execution
latency, real-world measurement has shown to be the most accurate technique.
This may, however, increase the runtime of the NAS, as each network candidate
needs to be transferred to the edge device, perform the measurement, and re-
turn the results. Therefore, many works rely on learning a surrogate model, use
a look-up table or heuristics, to predict the latency on the target hardware. Even
ML-based prediction models result in an error that is off by a factor of up to 3.8,
compared to the actual latency [I]. Other important hardware cost measure-
ments include energy consumption and memory footprint. While benchmarks
exist that collect a large number of edge measurements on modern devices, they
are often limited in scope. For Computer Vision (CV) workloads these are mainly
focused on Convolutional Neural Networks (CNNs) [8], while the ones that focus
on Transformer-based models tend to emphasize large language models. [12].

3 Design and Implementation

This section introduces the database schema in Sec. the AI model along
with its architectural and optimizer-related hyperparameters in Sec. [3.2] and
the setup of main HPC2Edge workflow in Sec. [3.3]

To enable a wide roll-out of monitoring of 3D printers, it is highly preferable
to run the inference on embedded hardware near the printer rather than re-
motely and expensively on a power-hungry machine. Therefore, the community
ultimately faces a multi-objective optimization problem: finding a model that

4 M. Aach, C. Blanc, A. Lintermann, and K. De Grave

is as accurate as possible and at the same time sufficiently fast and small for
inferencing on embedded hardware.

Fig. 1: The edge device, an Nvidia AGX Orin (front), with a frame grabber PCle
card (green) for interfacing with high-speed cameras over fiber.

The embedded system of choice is an NVIDIA Jetson AGX Orin™ system,
see Fig. This system is fairly powerful and expensive (~2,000 EUR as of
03/2025) for an embedded device. The cost is, however, reasonable compared to
the much more expensive metal printer and camera. The Jetson has an integrated
10 Gbps Ethernet Network Interface Card (NIC), a Peripheral Component In-
terconnect Express (PCle) slot for hosting a frame grabber, and it can emulate
smaller and cheaper devices of the same series. System and GPU memory are
unified on the board. On the full AGX Orin, memory is not a constraining factor
for storing the default NN architecture of the baseline model presented in this
study. However, the speed of inference remains a constraint, as the system must
be able to process the entire surface to catch all faults. The latency of this predic-
tion should be low, i.e., feedback to the controller arrives within a few scanlines
to avoid more damage and allow recovery of the fault. Ideally, this processing
time should be not much longer than the time it takes to print a scanline.

The two objectives are therefore (i) inference speed and (ii) the Root Mean
Square Error (RSME) of the predictions. The inference speed for a model ar-
chitecture is influenced by many factors, such as the number of parameters. It
can be roughly estimated/interpolated (see Sec. , but only an execution on the
device itself can reveal the true inference performance. Therefore, the inference
speed of all model variants considered in this study are directly measured on the
embedded device.

A central relational database (in PostgreSQL) has been set up to allow bi-
directional communication between the embedded device located in Belgium at
Flanders Make and the HPC cluster located at the Jiilich Supercomputing Cen-
tre, Forschungszentrum Jiilich, in Germany. The schema is shown in Fig. [2] The
optimizer consults the embedded device as soon as it conceives a new candidate
NN architecture (hyperparameter setting), posting the architecture details to

Optimizing edge Al models on HPC systems with the edge in the loop 5

the database. The embedded device continuously polls the database for unmea-
sured architectures, compiles and optimizes the architecture with the NVIDIA
TensorRT librar and (after warmup) runs a few inference steps to measure
steady-state latency and throughput at several batch sizes. It subsequently re-
ports its results back to the database.

The current setup lacks load balancing for multiple embedded devices of the
same type, which is desirable for extremely large-scale optimizations, for efficient
parallel operation also on the embedded side, as well as to achieve a degree of
fault tolerance. At this point, further optimizations, such as the introduction of
surrogate models, also become relevant.

3.1 Database Schema

The HPC2Edge database schema, shown in Fig. 2] consists of an essential part
that supports basic communication between the HPC and edge systems (labeled
‘HPC2Edge core’ in the figure), and accessory tables to optionally store the full
exploration of the optimizer. In terms of core schema, the edge device is GRANTed
INSERT permission only into the edge_measurement table. The Hyperparameter
Optimization (HPO) algorithm gets an account that can INSERT into the (neu-
ral) network_architecture and benchmark_result tables. All accounts can
SELECT from all tables. The JSONB columns allow noSQL-equivalent freedom to
evolve the system without changing the main schema, but can still be indexed
and efficiently queried when needed.

The extended schema is designed to be compatible with OpenMIﬂ [13], which
is an open platform for sharing datasets, algorithms, and experiments. OpenML
has similarities to the more recent Hugging Faceﬂ platform, it is, however, more
geared towards classical ML using tabular datasets. It offers Application Pro-
gramming Interfaces (APIs) and supports experiment logging from several popu-
lar ML toolkits. The present work uses the publicly available code as of 08/ 2024@
Note that no full direct compatibility is achieved and OpenML has announced
a full backend code rewrite, i.e., their future schema might be structured sub-
stantially different.

OpenML uses an extremely flexible, untyped schema. Here, some untyped, string-
serialized fields were specialized to double precision, and the table math_function
to estimation_procedure. Only reference records relevant for regression are
stored, without loss of generality. The tables benchmark and benchmark_result
correspond conceptually to tasks and runs in OpenML. It should be noted that
the corresponding Data Definition Language (DDL) was not available publicly

® NVIDIA TensorRT: https://developer.nvidia.com/tensorrt-getting-started

5 OpenML: https://openml.org

" Hugging Face: https://huggingface.co

8 OpenML 08/2024: https://github.com/openml/OpenML /tree/develop/data/sql

https://developer.nvidia.com/tensorrt-getting-started
https://openml.org
https://huggingface.co
https://github.com/openml/OpenML/tree/develop/data/sql

6 M. Aach, C. Blanc, A. Lintermann, and K. De Grave

HPC2Edge core

edge_measurement

L edge_device

PK

id SERIAL NOT NULL

PK | id SERIAL NOT NULL

created TIMESTAMP NOT NULL

task_type

PK | id SERIAL NOT NULL

name VARCHAR(50) NOT NULL

description TEXT

repeats INTEGER
folds INTEGER

samples BOOLEAN

percentage DOUBLE PRECISION
stratified_sampling BOOLEAN

custom_testset BOOLEAN

name VARCHAR(50) NOT NULL f FK | device_id INTEGER NOT NULL = network_architecture
vram_gib DOUBLE PRECISION FK | network_architecture_id INTEGER NOT NULL PK | id SERIAL NOT NULL
batch_size INTEGER NOT NULL created TIMESTAMP NOT NULL
latency_ms DOUBLE PRECISION NOT NULL name VARCHAR(50) NOT NULL
results JSSONB NOT NULL hyperparameters JSONB NOT NULL
L benchmark = benchmark_result
PK | id SERIAL NOT NULL PK | id SERIAL NOT NULL
created TIMESTAMP NOT NULL created TIMESTAMP NOT NULL
name VARCHAR(50) UNIQUE NOT NULL FK | network_architecture INTEGER NOT NULL
FK | estimation_procedure INTEGER NOT NULL FK | benchmark INTEGER NOT NULL
dataset VARCHAR(50) FK | evaluation_measure INTEGER NOT NULL
target_feature VARCHAR(50) value DOUBLE PRECISION
FK | task_type INTEGER NOT NULL
description TEXT
OpenML
e estimation_procedure = evaluation_measure
PK | id SERIAL NOT NULL PK | id SERIAL NOT NULL
created TIMESTAMP NOT NULL created TIMESTAMP NOT NULL
= estimation_procedure_type name VARCHAR(50) NOT NULL name VARCHAR(50) UNIQUE NOT NULL
PK | name VARCHAR (50) NOT NULL FK | ep_type VARCHAR(50) NOT NULL min_value DOUBLE PRECISION
description TEXT FK | ttid INTEGER NOT NULL max_value DOUBLE PRECISION

unit VARCHAR(50)
higherlsBetter BOOLEAN

description TEXT

source_code TEXT

Fig. 2: Relational database schema for connecting the HPC-based HPO with an

embedded device for inference measurements.

to ensure some level of compatibility. Future work may consider running a full
OpenML server for experiment logging — or some other logging method like
MLAflow El or ClearML |E| — extended with only the HPC2Edge core schema.

3.2 Al Model

The model used to predict the laser parameters and to produce the following
results (see Sec. [) is a Video Swin Transformer [I0] with a modified fully con-
nected end layer for power and speed regression. The data pre-processing is the
same as described in [2]. The RAISE-LPBF-Laser dataset (v1.1) [2], consist-
ing of high-speed camera frames paired with various laser parameters, is used.

9 MLflow: https://mlflow.org/
10" ClearML: https://clear.ml/

https://mlflow.org/
https://clear.ml/

Optimizing edge Al models on HPC systems with the edge in the loop 7

Training and validation focus on a single object (C027) with an 80-20 split,
while object C028 is used for testing. The proposed NAS framework directly
optimizes performance for edge deployment, balancing both speed and accuracy,
while leveraging HPC for acceleration. This work provides an efficient solution
for real-time Al-driven industrial applications.

The input to the model consists of a window of 16 consecutive frames that
are randomly sampled from each scanline and then normalized and resized to
a model input shape of (256, 256) pixels. The output of the model corresponds
to the ground-truth values, consisting of a pair of setpoints for laser dot speed
and power for each scanline, which are normalized by dividing by their nom-
inal values of 900mm/s and 215W, respectively. The choice of using a Video
Swin model for prediction is motivated by the fact that it is the best performing
attention-based model from [10] and that its architecture can be easily modified.
Specifically, the model’s hyperparameters are well-designed to minimize conflicts
and interdependencies, reducing the likelihood of parameterization issues during
the optimization run.

The hyperparameters of the model that are optimized during the NAS run are
listed in Tab. [Il The search space includes various Transformer-specific archi-
tectural parameters, i.e., the video patch size, which controls the temporal and
spatial granularity of the input, the embedded dimensions influencing the di-
mensions of the tokens, the depths of each model stage, the number of attention
heads, the window size of the self attention, and the ratio of feed-forward Multi-
layer Perceptron (MLP) layers between attention blocks. The classical optimizer-
related parameters are the base learning rate of the Adam optimizer [7] and the
scheduler-specific step-size and learning rate decay factor. The search space is
chosen to be high-dimensional to allow for an extensive exploration of model size
and model quality.

3.3 Workflow Setup

The setup of the HPC2Edge workflow is shown in Fig.[3] The training of the dif-
ferent models is performed on the Extreme-Scale Booster partition of the DEEP-
EST HPC machine [II] at the Jiilich Supercomputing Centre, Forschungszen-
trum Jilich, in Germany. It features a total of 75 nodes, each one equipped
with one NVIDIA V100 GPU and an Intel Xeon 4215 Central Processing Unit
(CPU) with 8 cores and a base frequency of 2.5 GHz. To achieve results in a
reasonable amount of time, the training of the different NNs is performed in data-
parallel fashion with the PyTorch-DDP libraryE Orchestration of the HPO runs
is handled by the Ray Tune framcworkllzl The optimization process leverages the
Nevergrad libraryIE, a gradient-free optimization tool. Nevergrad performs evo-
lutionary optimization in settings where the computation of gradients is hard or

' PyTorch-DDP: https://pytorch.org/docs/stable/notes/ddp.html
2 Ray Tune: |https://www.ray.io/
13 Nevergrad: https://facebookresearch.github.io/nevergrad/

https://pytorch.org/docs/stable/notes/ddp.html
https://www.ray.io/
https://facebookresearch.github.io/nevergrad/

8 M. Aach, C. Blanc, A. Lintermann, and K. De Grave

Table 1: Hyperparameter search space, consisting of architectural and optimizer-
related hyperparameters of the Video Swin Transformer model.

Name Description Default |Sampling Range

Patch size Video patch size for transformer|[2,4,4] [2, 4] each
tokenization

Embedded dimensions |Number of linear projection out-|96 (24, 48]
put channels

Depths Depths of each Video Swin|[2,2,6,2] [[1, 2, 4] each
Transformer stage

Heads number Number of attention heads of|[3,6,12,24]|[3,6,12,24] each
each stage

MLP ratio Ratio of MLP hidden dim. to|4 1, 2, 3, 4]
embedding dim.

Learning rate Controls how much to adjust|le™* log[le-5, 1]
model weights during training

Learning rate step size|Interval of learning rate adjust-|{10 [10, 20, 40]
ment

Learning rate ~y Learning rate decay factor 0.5 (0.1, 0.9)

impossible. It is, therefore, a suitable solution for black box optimization prob-
lems such as HPO and NAS. It features a variety of optimization methods, that
can be selected based on the search space and available computing budget. For
the present work, the (1+1) EA was chosen. The algorithm starts with an initial
parent population and then creates one offspring for each parent via mutation.
It subsequently evaluates the fitness of both the parent and the offspring. In case
the offspring achieves a better fitness value than the parent, it replaces the par-
ent in the subsequent generation. For the present experiments, the population
size is fixed at 8, while the total number of evaluations is varied from 16 to 64.

The edge device periodically queries the database for new, unevaluated entries
that match its configuration, i.e., for supported edge device types. Upon finding
a relevant entry, it loads the model parameters and performs ten inference runs
to compute an average timing. This process is repeated for each configured batch
size (1, 2, 4, and 8 in this case). The measured inference times, along with other
measurements not exploited in this method, e.g., memory usage, CPU usage, or
GPU usage, are entered in the database to be leveraged by the optimizer. Once
a hyperparameter candidate is chosen, four GPUs are allocated to its training.
With a population size of 8, this results in 32 GPUs being used at the same time.
Before launching the training, the head GPU submits the architectural details
to the database for latency measurement on the edge device. After training for
two epochs, the head node reads back this runtime measurement and combines it
with the achieved validation loss. Submitting the architecture to the edge device
before training the model and inquiring about the runtime measurement only
after the model is trained hides the latency of communication between the HPC

Optimizing edge AT models on HPC systems with the edge in the loop 9

|

Y

a
(2] (=]
o o
(= (=

a
(2] D
) -
(= (=1

E
(2] (=]
n-d o
(=4 (=
&l
@ D
) -
c (=4

T — /

i

o = -
- - > R, \ r r
- - GPU £1"GPU
p = — |||+|i
TIrry "6PU [; GPU
Edge Database

H

GPU I GPU
"GPU f1"GPU

<«— Nevergrad Optimizer
~—

<«— Data-parallel Training of Configurations
<+— Communication of Measurements HPC System

Fig.3: Orchestration of the Hardware-aware NAS search, with communica-
tion between the HPC system, located at the Jiilich Supercomputing Centre,
Forschungszentrum Jiilich, in Germany, and the edge device, located at Flan-
ders Make in Belgium.

system and edge device.
5COT€pqr = 1085yq) - 1000 + timeip ference (1)

A weighted validation score value, based on validation loss and inference time in
milliseconds (see Eq. [1]) is then reported back to the optimizer and minimized.
The best performing model is chosen according to the lowest score achieved.
This model is then evaluated on the unseen test dataset, where also a test score
is computed in a similar way.

4 Empirical Results

The empirical results of running the hybrid workflow are shown in Tab. 2] It
compares the default hyperparameter configuration, which was chosen by an
expert (baseline) based on experience and several experiments, against running
hardware-aware NAS with an increasing number of samples n = {16, 32,64}.
The training times of a single configuration range between 1 — 3 hours, while the
whole HPO run on the HPC system took between 8 — 19 hours, stretching the
maximum allowed job time of 20 hours on the HPC system. The evaluation met-
rics include the validation loss [,,, the inferences time ¢ and the test loss I; of the
best configuration, which is chosen according to the lowest validation score met-
ric sy, see Eq. . The most significant reduction in comparison to the baseline
can be observed for the inference time metric. Using just 16 samples decreases
the inference time by a factor of ~ 6.35 from 332ms to 52ms. Increasing the

10 M. Aach, C. Blanc, A. Lintermann, and K. De Grave

Table 2: Results at different scales (averaged over five seeds).
Num. Samples‘Val. Score‘Val. Loss‘Inference Time‘Test Score‘Test Loss

0 (baseline) 412.81 0.0807 332.11ms 457.51 0.1254
16 146.02 0.0937 52.30ms 156.66 0.1044
32 140.26 0.0959 44.34ms 140.53 0.0962
64 129.99 0.0923 37.72ms 130.58 0.0929

number of samples to 64 even leads to a reduction factor of ~ 8.8 in comparison
to the baseline, which highlights the potential of the hybrid HPC2Edge workflow.

In terms of model quality, the validation loss metric shows varying performance
across different sample sizes. At 16 samples, the validation loss increases to
0.0937, while at 64 samples it still remains higher at 0.0923, compared to the
baseline. In contrast, the 64 samples NAS run results in the best model, de-
creasing the test loss by a factor of =~ 1.35 compared to the baseline model.
It is hypothesized that the fluctuations in the validation loss metric are due to
the weighting of both metrics into a single one, see Eq. , and thus a larger
focus is on the inference time. However, as shown by the decreasing test loss,
the model still seems to be able to achieve a higher solution quality than the
baseline. Both metrics, the model quality on the test set and the inference time
in general decrease for the model on the edge as the number of samples (and
thus the compute resources spent on the NAS loop) is increased. In Fig. [4 the
pareto curves of the different configurations are depicted, showing the optimal
trade-off points between validation loss and inference time. As can be seen, in
all cases the pareto curves do move to the left bottom of the plots, indicating
better models.

To assess the importance of the architectural and optimizer-related parameters
on the model performance, the top 10% models found during the 5 NAS runs
with 64 samples are examined through their median hyperparameter values.
The results show that a small learning rate of ~ 4.7 - 10~4, combined with a
large decay factor of ~ 0.75 and a moderate adjustment interval of 20 steps
results in the lowest validation score values. From an input data perspective, a
median patch size of [4,4, 4] suggests larger patches to be more favorable. From
an architectural point of view, a median depth of [1, 1,2, 1], a median attention
head number of [3,6,3,12], and a median embedding dimension of 24 suggests
smaller models to be favorable. This is expected as these parameters usually
also result in shorter inference times, which is one of the two objectives of the
multi-objective optimizer.

5 Summary and Conclusion

In this work, a hybrid, cross-border, hardware-aware NAS workflow that runs
in parallel on an HPC system and an edge device was presented. The work-

Optimizing edge Al models on HPC systems with the edge in the loop 11

Trade-Off Num_Samples = 16 Trade-Off Num_Samples = 32

e All Points 4x10°1 e All Points
e Pareto Points e Pareto Points
3x107! -=- Pareto Frontier 3x107t -=- Pareto Frontier

4x1071

2x1071 2x10-!

Validation Loss
Validation Loss

-
o
L
g
°
°
°

6x 1072 6x10-2

100 200 300 400 100 200 300 400
Inference Time (ms) Inference Time (ms)
Trade-Off Num_Samples = 64
e All Points
e Pareto Points
3x107! -=~ Pareto Frontier

4x107t

2x107!

°
I..
Sosmo © o ° o o °

100 200 300 400
Inference Time (ms)

Validation Loss

H
<

6x1072

Fig. 4: Results at different scales, showing the median best run.

flow leverages the powerful GPUs of the HPC system to train different model
configurations with data-parallel training while performing the inference time
measurement of the models on the actual target device, resulting in an accurate
measurement. To hide communication latency, each candidate model architec-
ture is sent to the inference device before training on the HPC system. The
empirical results clearly highlight how large savings in terms of inference time
and model quality (in terms of final test loss) can be achieved. As a key find-
ing, this research demonstrates empirically that increasing the computational
resources of the HPO loop can lead to a smaller computational resource usage
during the inference on the edge device. In the future, such workflows could
therefore be used to find architectures with even higher speed (compared to ex-
pert baselines) or fitting on even smaller edge devices, which is an important
feature not only in AM but in any field where fast ML models are deployed on
small devices.

Acknowledgements. The CoE RAISE project has received funding from the
European Union’s Horizon 2020 Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733. This research was
also partially supported by the RELAI project of Flanders Make, the strategic
research centre for the manufacturing industry, and by the Flemish Government
AT Research Program. Resources for the database were provided by the VSC
(Flemish Supercomputer Center), funded by the Research Foundation - Flan-
ders (FWO) and the Flemish Government.

12

M. Aach, C. Blanc, A. Lintermann, and K. De Grave

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

Venue and Manuscript Version. This work was accepted for publication in
the proceedings of ISC 2025 workshop Computational Aspects of Deep Learning
(CADL 2025), and was selected for oral presentation. This preprint version of
the manuscript, however, has not undergone peer review or any post-submission
improvements or corrections. The Version of Record of this contribution will be
published in HIGH PERFORMANCE COMPUTING: ISC High Performance
2025 International Workshops (Lecture Notes in Computer Science — LNCS).

References

10.

Benmeziane, H., Maghraoui, K.E., Ouarnoughi, H., Niar, S., Wistuba, M., Wang,
N.: A comprehensive survey on hardware-aware neural architecture search (2021),
https://arxiv.org/abs/2101.09336

Blanc, C., Ahar, A., De Grave, K.: Reference dataset and benchmark for recon-
structing laser parameters from on-axis video in powder bed fusion of bulk stainless
steel. Additive Manufacturing Letters 7, 100161 (2023)

Booth, B.G., Heylen, R., Nourazar, M., Verhees, D., Philips, W., Bey-Temsamani,
A.: Encoding stability into laser powder bed fusion monitoring using temporal
features and pore density modelling. Sensors 22(10) (2022). https://doi.org/10.
3390/522103740

Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications (2017), https://arxiv.org/abs/1704.04861

Jiang, W., Zhang, X., Sha, E.H.M., Yang, L., Zhuge, Q., Shi, Y., Hu, J.: Accuracy
vs. efficiency: Achieving both through FPGA-implementation aware neural archi-
tecture search. In: Proceedings of the 56th Annual Design Automation Conference
2019. DAC '19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3316781.3317757

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015), http://arxiv.org/abs/1412.
6980

Li, C., Yu, Z., Fu, Y., Zhang, Y., Zhao, Y., You, H., Yu, Q., Wang, Y., Lin,
Y.C.: HW-NAS-bench: Hardware-aware neural architecture search benchmark. In:
International Conference on Learning Representations (2021), https://openreview.
net/forum?id= OkaDkv3dVf

Lin, J., Chen, W.M., Lin, Y., Cohn, J., Gan, C., Han, S.: MCUNet: tiny deep
learning on IoT devices. In: Proceedings of the 34th International Conference on
Neural Information Processing Systems. NeurIPS ’20, Curran Associates Inc., Red
Hook, NY, USA (2020)

Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H.: Video swin trans-
former. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 3202-3211 (June 2022)

https://arxiv.org/abs/2101.09336
https://doi.org/10.3390/s22103740
https://doi.org/10.3390/s22103740
https://doi.org/10.3390/s22103740
https://doi.org/10.3390/s22103740
https://arxiv.org/abs/1704.04861
https://doi.org/10.1145/3316781.3317757
https://doi.org/10.1145/3316781.3317757
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf

11.

12.

13.

14.

15.

Optimizing edge Al models on HPC systems with the edge in the loop 13

Suarez, E., Kreuzer, A., Eicker, N., Lippert, T.: The DEEP-EST project, Schriften
des Forschungszentrums Jiilich IAS Series, vol. 48, pp. 9-25. Forschungszentrum
Jillich GmbH Zentralbibliothek, Verlag, Jilich (2021), https://juser.fz-juelich.de/
record /905812

Sukthanker, R.S., Zela, A., Staffler, B., Klein, A., Purucker, L., Franke, J.K., Hut-
ter, F.: HW-GPT-bench: Hardware-aware architecture benchmark for language
models. In: The Thirty-eight Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (2024), https://openreview.net/forum?id=
urJyyMKs7E

Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. SIGKDD Explorations 15(2), 49-60 (2013). https://doi.org/
10.1145/2641190.2641198

Wu, B., Keutzer, K., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y.,
Vajda, P., Jia, Y.: Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In: 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 10726-10734. IEEE Computer Society, Los
Alamitos, CA, USA (Jun 2019). https://doi.org/10.1109/CVPR.2019.01099
Zoph, B., Le, Q.: Neural architecture search with reinforcement learning. In: Inter-
national Conference on Learning Representations (2017), https://openreview.net/
forum?id=r1Ue8Hcxg

https://juser.fz-juelich.de/record/905812
https://juser.fz-juelich.de/record/905812
https://openreview.net/forum?id=urJyyMKs7E
https://openreview.net/forum?id=urJyyMKs7E
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

	Optimizing edge AI models on HPC systems with the edge in the loop

