001     1048926
005     20260203123432.0
024 7 _ |a 10.1038/s41598-025-26471-6
|2 doi
024 7 _ |a 10.34734/FZJ-2025-05023
|2 datacite_doi
037 _ _ |a FZJ-2025-05023
082 _ _ |a 600
100 1 _ |a Mahdavi, Maryam
|0 0000-0002-8371-0694
|b 0
245 _ _ |a Integrating ECG-derived features with conventional CVD risk models
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769160737_19119
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Non-communicable diseases (NCDs), particularly cardiovascular diseases (CVDs), have becomethe leading cause of mortality worldwide, with Iran exhibiting higher-than-average incidence andmortality rates. Early detection of high-risk individuals is critical, as CVD often progresses silently.Electrocardiogram (ECG) signals may enhance risk prediction beyond Framingham risk score (FRS).This study aimed to evaluate the predictive performance of ECG signal features for incident CVD usingsignal processing in a large population-based cohort from the Tehran Lipid and Glucose Study (TLGS). Atotal of 4,637 adults aged 40 years devoid of past CVD at baseline (2006–2008) were followed up until2018. Baseline characteristics, laboratory measurements, and ECG signal features were collected. CVDevents were defined as coronary heart disease (CHD) or stroke. A recalibrated FRS (baseline) modelassessed the association between ECG features and incident CVD, with model performance evaluatedusing Harrell’s C-index, Net Reclassification Index (NRI), and Integrated Discrimination Improvement(IDI). Over a 10-year follow-up, 483 participants (10.4%) developed CVD. The introduction of ECGsignal features improved risk prediction in women, increasing the Harrell’s C-index from 0.84 to 0.85and demonstrating significant reclassification improvement (NRI: 55.7%, IDI: 2.8%). However, nomeaningful improvement was observed in men. ECG-based modeling outperformed FRS, particularlyfor intermediate-risk categories among women. Incorporating ECG signal features into risk modelssignificantly enhanced CVD prediction performance in women, suggesting potential utility forimproving individualized preventive strategies. Further research is warranted to refine ECG-based riskstratification tools for broader clinical application.
536 _ _ |a 5243 - Information Processing in Distributed Systems (POF4-524)
|0 G:(DE-HGF)POF4-5243
|c POF4-524
|f POF IV
|x 0
536 _ _ |a GRK 2610 - GRK 2610: Innovative Schnittstellen zur Retina für optimiertes künstliches Sehen - InnoRetVision (424556709)
|0 G:(GEPRIS)424556709
|c 424556709
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kazemnejad, Anoshirvan
|0 0000-0002-0143-9635
|b 1
|e Corresponding author
700 1 _ |a Asosheh, Abbas
|0 0000-0002-5560-8238
|b 2
|e Corresponding author
700 1 _ |a Khalili, Davood
|0 0000-0003-4956-1039
|b 3
700 1 _ |a Hosseinpour, Kamyab
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tajari, Ahmadreza
|0 P:(DE-Juel1)204514
|b 5
|u fzj
773 _ _ |a 10.1038/s41598-025-26471-6
|g Vol. 15, no. 1, p. 39128
|0 PERI:(DE-600)2615211-3
|n 1
|p 39128
|t Scientific reports
|v 15
|y 2025
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/1048926/files/Scientific_Reports_Tajari_12_2025.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048926
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)204514
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5243
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2025-08-21T14:09:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2025-08-21T14:09:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2025-08-21T14:09:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-11-07
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-11-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-11-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-1-20200312
|k IBI-1
|l Molekular- und Zellphysiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-1-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21