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Integrating ECG-derived features
with conventional CVD risk models
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Non-communicable diseases (NCDs), particularly cardiovascular diseases (CVDs), have become

the leading cause of mortality worldwide, with Iran exhibiting higher-than-average incidence and
mortality rates. Early detection of high-risk individuals is critical, as CVD often progresses silently.
Electrocardiogram (ECG) signals may enhance risk prediction beyond Framingham risk score (FRS).
This study aimed to evaluate the predictive performance of ECG signal features for incident CVD using
signal processing in a large population-based cohort from the Tehran Lipid and Glucose Study (TLGS). A
total of 4,637 adults aged 40 years devoid of past CVD at baseline (2006-2008) were followed up until
2018. Baseline characteristics, laboratory measurements, and ECG signal features were collected. CVD
events were defined as coronary heart disease (CHD) or stroke. A recalibrated FRS (baseline) model
assessed the association between ECG features and incident CVD, with model performance evaluated
using Harrell's C-index, Net Reclassification Index (NRI), and Integrated Discrimination Improvement
(IDI). Over a 10-year follow-up, 483 participants (10.4%) developed CVD. The introduction of ECG
signal features improved risk prediction in women, increasing the Harrells C-index from 0.84 to 0.85
and demonstrating significant reclassification improvement (NRI: 55.7%, IDI: 2.8%). However, no
meaningful improvement was observed in men. ECG-based modeling outperformed FRS, particularly
for intermediate-risk categories among women. Incorporating ECG signal features into risk models
significantly enhanced CVD prediction performance in women, suggesting potential utility for
improving individualized preventive strategies. Further research is warranted to refine ECG-based risk
stratification tools for broader clinical application.
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Non-communicable diseases (NCDs) have emerged as a major global public health concern, accounting for
nearly 60% of total annual mortality worldwide'. Among these, cardiovascular diseases (CVDs) represent a
leading contributor, affecting a substantial portion of the global population?. Cardiovascular diseases (CVDs)
constitute the predominant cause of mortality in Iran®, with age-standardized incidence and mortality rates, as
well as disability-adjusted life years (DALYs) attributed to CVDs, surpassing global averages®. The increasing
prevalence of sedentary lifestyles, rising obesity rates, and declining physical activity levels among Iranians are
expected to exacerbate the burden of CVDs in the coming years®. Demographic transitions, including an aging
population, are likely to further elevate the prevalence of these conditions.

CVDs count as one of the primary causes of morbidity and mortality on a global scale. In 2015, they were
responsible for approximately 17.9 million deaths and 347.5 million DALYs®’. Although mortality rates from
CVDs are declining in high-income countries, a significant proportion of deaths still occur in low- to middle-
income countries, particularly in the Eastern Mediterranean region’. In Iran, there has been a notable shift in
mortality patterns from infectious diseases to NCDs over recent decades, with CVDs being highly prevalent®.
Iran’s high prevalence of CVDs presents significant healthcare and economic challenges’. Cardiovascular
complications such as stroke, myocardial infarction (MI), and coronary artery disease (CAD) can result in
both fatal and non-fatal outcomes. While advancements in treatment have contributed to reduced mortality,
many individuals continue to suffer from long-term complications, including psychological distress, fatigue,
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sleep disturbances, dyspnea, and reduced quality of life!®. In severe cases, CVDs may progress to heart failure,
recurrent MJ, or sudden cardiac death!!.

Cardiovascular disease (CVD), a multifactorial and chronic condition stemming from various heart and
vascular system disorders, remains the primary cause of premature mortality and long-term disability globally.
Although pharmacological and surgical interventions are routinely employed to manage CVD, they do not offer
a permanent cure and often have a considerable impact on patients” quality of life. Consequently, contemporary
approaches to CVD management place significant emphasis on prevention. Emerging evidence suggests that
up to 80% of premature deaths attributed to CVD may be preventable through timely interventions'. Since
CVD typically progresses slowly and may remain asymptomatic for extended periods, it is frequently diagnosed
in its advanced stages, when treatment becomes more complex. Thus, early detection of individuals at high
risk is essential for implementing effective preventive strategies'®. In line with this, recent clinical guidelines
increasingly advocate for the use of CVD risk prediction models to identify individuals who may benefit from
early, targeted preventive measures. Notably, Framingham risk score (FRS) have formed the basis for most of
these models'*.

Advancements in computer science, coupled with the demand for precision medicine, have led to an increase
in multidimensional data from various sources. This necessitates the development of advanced tools and models
capable of processing, understanding, and analyzing this vast and intricate data. These tools must also accurately
forecast outcomes and predict risks. The most effective predictive model, which delivers optimal performance, is
determined by several key factors. These include the specific objectives and purposes for which the models are
developed, their ability to generalize across different datasets, their robustness in handling diverse conditions,
and their capacity to produce consistent and reproducible results when applied in real clinical settings'®. Our goal
in doing this research was to quantify the association between ECG signals and incident CVD in a population-
based cohort called the Tehran and Lipid Glucose Study (TLGS) during more than a decade of follow-up. This
study explores whether integrating ECG signal data can improve cardiovascular disease prediction.

Materials and methods

Participants

The Tehran Lipid and Glucose Study (TLGS), launched in 1999, is a population-based prospective cohort study
conducted in Tehran’s District 13, aimed at examining risk factors associated with non-communicable diseases
(NCDs). The study design has been described in previous publications!®. In brief, the first phase (1999-2001)
was cross-sectional, enrolling 15,005 individuals aged > 3 years through a multistage random sampling method.
The study continued as a longitudinal follow-up, with data from 8,071 participants aged 40 to 79 years in the
third phase used for this analysis. The sixth phase (2015-2018) follow-up included cardiovascular disease (CVD)
events such as coronary heart disease (CHD) or stroke, along with follow-up duration. The study was conducted
in multiple phases:

« Phase one (1999-2001) and phase two (2002-2005) followed a multistage, random cluster sampling method.
« Follow-ups occurred at approximately 3.5-year intervals, continuing through phases three to seven (2006-
2020), with an average 73% participation rate per phase.

For the current analysis, 5,479 adults aged 40-79 years who took part in the third examination cycle were
initially considered. We entered the participants in phase III of TLGS for data analysis because ECG signals were
gathered in this phase onwards. After excluding individuals based on specific criteria, history of CVD (n=772),
lost to follow-up for CVD events (n=15), and missing ECG data (n=2207). The final study population included
4,637 adults without any established CVD (CHD or stroke). Participants had no previous record of coronary
artery disease (including angina, myocardial infarction, coronary artery bypass grafting, or percutaneous
coronary intervention), cerebrovascular conditions (such as stroke or transient ischemic attack), or peripheral
arterial disease (such as claudication) at the third examination cycle, which served as the baseline, with follow-
up extending until March 2018 (Fig. 1). This large-scale, population-based study continues to be a valuable
resource for monitoring risk factors that correspond to chronic diseases and cardiovascular conditions.

Measurements

Eligible participants underwent initial interviews to collect socio-demographic and medical data. All
measurements were conducted by trained staff following standardized study protocols. Further details on the
measurement methods can be found in previous studies [19]. Participants were seated, and their diastolic blood
pressure (DBP) and systolic blood pressure (SBP) were assessed twice by a general physician after they had
rested for 15 min. A standard mercury sphygmomanometer was used consistently to measure blood pressure,
with the first reading determining the maximum inflation level and the average of two readings recorded. For
laboratory assessments, participants were directed to fast for 12 to 14 h before blood sampling. Samples were
immediately transported to the TLGS laboratory for analysis using Selectra autoanalyzers (Vital Scientific,
Spankeren, Netherlands). Fasting plasma glucose (FPG) was measured using an enzymatic colorimetric method
based on glucose oxidation. Lipid profile assessments were performed using Pars Azmoon (Tehran, Iran)
commercial kits. Total cholesterol (TC) was measured through enzymatic colorimetric tests utilizing cholesterol
esterase, cholesterol oxidase, and glycerol phosphate oxidase. High-density lipoprotein cholesterol (HDL-C) was
measured using phosphotungstic acid precipitation. Laboratory tests were conducted only when internal quality
control values fell within the acceptable range. For more information on the measurement methods, please refer
to other studies'’.
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Data from 7631 participants aged >30 years recruited
from phase 3 of the TLGS
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Fig. 1. Study flowchart illustrating the selection of participants from the Tehran Lipid and Glucose Study
(TLGS) cohort.

Definitions of outcome

Participants were followed up annually for cardiovascular disease (CVD) events by trained nurses through
telephone interviews. If an event was reported, a trained physician collected additional data through home
visits or hospital record reviews. The final diagnosis was confirmed by the Cohort Outcome Panel'®. Coronary
heart disease (CHD) was defined as the occurrence of myocardial infarction (MI), probable MI, unstable angina
pectoris, or angiography-confirmed coronary artery disease (CAD). In this study, cardiovascular disease (CVD)
was characterized as the incidence of either stroke or coronary heart disease (CHD), with the time until the
initial occurrence of either event recorded as the time-to-event. Further details of CVD outcomes are available
in previous publications'®.

ECG signal

The electrocardiogram (ECG) captures variations in electrical potentials across chest surface electrodes,
reflecting cardiac activity. Each heartbeat appears as a series of deviations from the ECG baseline, corresponding
to the heart’s electrical activity that drives muscle contraction®’. Key ECG components include the P wave, QRS
complex, and T wave. Features were extracted for 12 leads in ECG signals across multiple domains, including
time?!, frequency?!, time-frequency??, peak-R and morphological distances?®, and Heart Rate Variability
(HRV)?*?° (Table 1). The selection of features for men and women participants was driven by clinical expert
opinion and literature, taking into account the sex-specific differences in CVD risk factors and incidence®.

Analysis method
Normally distributed continuous variables were presented as mean and standard deviation (SD), and categorical
baseline characteristics were described as frequency (%). The independent T-test was applied to analyze
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Domain

Feature

Description

Frequency

The amplitude of the ECG signal
over time

The average and midpoint of the
signal values

The amount of signal dispersion
around the mean

The minimum and maximum signal
amplitudes and the distance
between them

The amount of asymmetry in the
distribution of amplitudes

The peak intensity of the distribution
of the number of outliers

The root mean square value describes
the signal’s overall power and indicates
the signal’s overall strength

These features use the Fast Fourier
Transform (FFT) to analyze the
signal in the frequency domain

Time

The total energy of the signal
across all frequencies

Identifying the frequency that has
the most energy

The center of gravity is the frequency
spectrum associated with the heart
rate. It determines whether the energy
is concentrated at low or high
frequencies. These features are useful
for detecting arrhythmias or heart
rhythm abnormalities

A general statistical representation
of the amplitude of the ECG signal
over time

Wavelet

The energy of the wavelets at each
level, which is useful for identifying
sharp changes such as the

QRS complex

Average wavelet coefficients at each
level, which are very useful for
identifying local changes in the signal
structure and play an important role
in detecting ectopic beats or ischemia

Wavelet decomposition decomposes
the ECG signal into different levels

(up to level 3) to extract time-frequency
information from the signal

Morphological distances

The maximum amplitude of one of
the peak-R waves

The average duration of the QRS
complex indicates the duration of
ventricular activation. The time
interval from the beginning of the
P wave to the peak of the R wave

The time interval from the beginning
of the Q wave to the end of the T
wave is very important for diagnosing
electrical disorders of the heart

The fluctuation of each of these
intervals

These features are extracted based
on R-peaks (peak points of the
heart rate)

Heart Rate Variability (HRV)

The average of the R-R intervals,
which is the inverse of the heart rate

The fluctuation of these intervals

The root mean square of the
differences between consecutive
R-R intervals and is suitable for
assessing the variability of the
heart rate over short intervals

The percentage of R-R intervals
whose difference is greater than
50 milliseconds and indicates the
activity of the parasympathetic
branch of the nervous system

HRYV features measure the time variation
between successive R-peaks and are
indicative of autonomic nervous

system activity

Table 1. ECG signal analysis features.

continuous variables, while the chi-squared test was used for categorical variables. The study participants’
baseline characteristics were compared between those with and without CVD using these tests. The event date
was established as the date of the CVD incident. Individuals who met the following criteria were excluded:
leaving the residential area, deaths not related to CVD, loss of follow-up, or end of follow-up.

The univariate cox regression model explored the relationship between potential features and CVD incidence.
The univariate model’s significance threshold for feature selection was set at an alpha level of 0.2. These features
were then entered into the forward stepwise Cox regression model, and important features for CVD incidence

were selected in both men and women.
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We used the FRS for the analysis of CVD outcome. Standard risk factors, such as age, smoking, systolic blood
pressure, antihypertensive medication use, total and HDL cholesterol levels, and diabetes, were employed to
develop the recalibrated FRS (baseline) model. The baseline Framingham risk score were combined with the
features of the ECG signal to generate an improved recalibrated FRS (baseline) model. In survival analysis,
Harrell’s C statistic is used to measure discrimination performance. The model’s performance was evaluated on
the data set through Harrell’s concordance index (C-index), specifically focusing on its ability to rank subjects
by risk. It determined the likelihood that, given a randomly selected pair of individuals who did or did not
experience the event of interest, the individual who did experience the event at a given time would have a higher
risk score compared to the randomly selected pair who did not experience the event during the same follow-up
interval?’. Bootstrap resampling was used to estimate the 95% confidence intervals for Harrell’s C statistics of
various models.

The discrimination of the model was determined by comparing the Net Reclassification Index (cNRI), and
Integrated Discrimination Improvement Index (IDI) between models. Paraclinical parameters were employed
to incorporate absolute and relative IDI, as well as cut-point-based and cut-point-free NRI, into the baseline
survival-based regression model as predictive ability measures®®. Cut-points for NRI were considered as low
risk: <5%, borderline risk: 5%-7.5%, intermediate risk: 7.5%-20%, and high risk: 220% based on the 10-year
ASCVD-PCE score classification. All analyses were conducted via Python, with a two-tailed p-value < 0.05
deemed statistically significant.

Result

A total of 2094 men and 2543 women were followed up. During a 10-year follow-up, out of 4637 non-CVD
participants in the TLGS, 483 (10.4%) developed CVD. Table 2 presents the descriptive data regarding research
participants, with analyses conducted separately for male and female subjects. A comparison of the baseline
characteristics between participants developing CVD and those not developing CVD is illustrated in Table 2.
At baseline, subjects with CVD had higher age, systolic and diastolic blood pressure, FPG and 2hPG levels,
cholesterol, and LDL compared to those without cardiovascular disease, across both genders. Mean values of
the age (57.76 vs. 47 years) were significantly higher in participants developing CVD than those not developing
CVD in men. Mean values of the age (58.67 vs. 45.69 years) were significantly higher in participants developing
CVD than those not developing CVD in women. No difference was observed between participants developing
CVD and those not developing CVD in the mean HDL in men. There was no significant difference in smokers
between participants developing CVD and those not developing CVD, regardless of gender.

In this study, specific electrocardiogram (ECG) features were selected for analysis, with different sets chosen
for male and female subjects. For male subjects, three features were selected: the maximum amplitude in lead
aVR, which is the highest amplitude recorded in that lead; the root mean square in lead I, a measure of the signal
magnitude calculated as the square root of the mean of squared values; and the minimum amplitude in lead V6,
the lowest amplitude recorded in that lead. For female subjects, a broader set of thirteen features was utilized.
These include the spectral centroid from the Fast Fourier Transform (FFT) in lead aVF, representing the center
of mass of the frequency spectrum; kurtosis in lead aVR, a statistical measure of the signal distribution; the mean
of wavelet coefficients at level 1 in lead aVR, which is the average of the wavelet decomposition coefficients at the
first level; the spectral centroid from FFT in lead I; the standard deviation in lead II, indicating the variability of
the signal amplitude; the dominant frequency from FFT in lead II, identifying the most prominent frequency

Women Men

Non-CVD CVD Non-CVD CVD
Variables (n=2353) (n=190) P-value | (n=1801) (n=293) P-value
Age (year) 4596+£11.26 | 58.67+9.94 <0.001 |47.00+12.66 |57.76x11.69 | <0.001
SBP (mmHg) 112.59+17.79 | 130.90+20.95 | <0.001 | 117.77+16.84 | 127.81+£20.06 | <0.001
DBP (mmHg) 73.09+10.18 78.53+11.61 <0.001 |76.05+10.11 79.15+11.49 <0.001
TC (mg/dl) 196.94+£39.41 | 218.26+41.85 | <0.001 | 190.92+36.46 | 200.95+38.05 | <0.001

HDL-C (mg/dl) |45.00+£10.52 | 42.03+9.49 <0.001 | 37.64+8.53 37.94+8.50 0.578
LDL-C (mg/dl) 121.69+32.83 | 136.87+35.63 | <0.001 | 119.67+31.55 | 127.35+34.40 | <0.001

FPG (mg/dl) 95.84+28.89 | 121.58+52.27 | <0.001 | 96.95+28.31 107.72+41.08 | <0.001
2-h PG (mg/dl) 110.92+44.60 | 134.98+56.52 | <0.001 | 107.98+52.80 | 120.41£58.55 | 0.001

DM 260 (11.3) 67 (37.2) <0.001 | 165 (9.5) 57 (20.2) <0.001
DM medication | 139 (5.9) 47 (24.7) <0.001 |72 (4.0) 29 (9.9) <0.001
HTN 335 (14.5) 83 (45.1) <0.001 | 285 (16.1) 92 (31.9) <0.001
HTN medication | 111 (4.7) 29 (15.3) <0.001 | 46 (2.6) 20 (6.8) <0.001
Current smoker | 65 (2.8) 6(3.3) 0.708 449 (25.4) 76 (26.4) 0.732

Table 2. Baseline characteristics of participants. SBP, systolic blood pressure; DBP, diastolic blood pressure;
TC, Total Cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; FPG, fasting plasma glucose; 2-hPG, 2-hour post-challenge plasma glucose; DM, diabetes melitus;
HTN, Hypertension. Data are given as the mean + SD for continuous variables and data are given as the n(%)
for categorical variables.
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component; the minimum amplitude in lead V3; the standard deviation of the PR interval in lead V3, reflecting
the variability of the time from the P wave’s start to the QRS complex’s start; the spectral centroid from FFT in
lead V4; the maximum R-peak amplitude in lead V4, the highest amplitude of the QRS complex’s peak; kurtosis
in lead V5; the mean QT interval in lead V5, the average duration from the Q wave’s start to the T wave’s
end; and the energy of wavelet coefficients at level 1 in lead V6, representing the energy content of the wavelet
decomposition coefficients at the first level.

Harrell's C index of discrimination can provide helpful information on the predictive performance of a
predictive model. As illustrated in Table 3, Harrell’s C index for models with and without ECG signal features
in men were 0.77 (CI: 0.75-0.79) and 0.77 (95% CI: 0.74-0.79), respectively. There was a slight difference in
the goodness of fit as indicated by AIC between these two risk algorithms (AIC: 3896 vs. 3899) in men. Also,
the Harrell's C index for models with and without ECG signal features in women was 0.85 (CI: 0.83-0.88)
and 0.84 (95% CI: 0.81-0.86), respectively (Fig. 2). A significant difference in goodness of fit, as measured by
AIC, was observed between the two risk algorithms in women (AIC: 2375 vs. 2395) in women. Assessing the
clinical significance of a new risk biomarker involves analyzing the predictive capability of an existing predictive
model enhanced by the addition of new biomarker(s). Generally, the introduction of ECG signal features to the
Framingham risk score in women significantly improved risk classification as indicated by cut point-free NRI of
55.7% (95% Cls: 46.5-65.0%), absolute IDI of 2.8% (95% ClIs: 1.0-4.6%) but the addition of ECG signal features
to the Framingham risk score in men significantly didn’t improve risk classification.

Table 4 presents the improvement in the reclassification of people across risk categories after complementing
Framingham Risk Score (FRS) with ECG signal features. In each of the four FRS categories (i.e., 0-4.9%, 5-7.4%,
7.5-19.9%, and =20%), 18.5%, 9.1%, 10.3%, and —16.1% of women were correctly reclassified, respectively. In
each of the four FRS categories (i.e., 0-4.9%, 5-7.4%, 7.5-19.9%, and = 20%), 0.0%, 5.9%, 1.7%, and — 3.0% of men
were correctly reclassified, respectively (Fig. 3). Participants without ECGs were excluded, which could provide
selection bias. Supplementary Table S1 compares included and excluded participants by gender. Although some
of the differences are statistically significant, the study’s findings are unlikely to be impacted by their clinically
negligible amounts.

Discussion

This study represents the first evaluation of electrocardiogram (ECG) signal features within the Tehran Lipid
and Glucose Study (TLGS) for predicting cardiovascular disease (CVD) risk. Our findings demonstrate that
ECG signal features significantly enhance the predictive capacity for CVD in women, both statistically and
clinically. These sex-specific results align with emerging evidence of differential immune-metabolic regulation
between males and females, as described by Pei et al. (2024), which may influence cardiac electrophysiology
and ECG-based prediction models?®. Mahdavi et al. evaluated the American Heart Association (AHA) risk
score classification in TLGS participants, noting its effectiveness in identifying high-risk individuals but limited
ability to accurately distinguish those with severe cardiovascular outcomes®. This suggests a need for refined
risk stratification approaches to improve predictive accuracy.

Khalili et al. previously highlighted the predictive utility of abnormal resting ECGs compared to Rose
Questionnaire angina in estimating 10-year coronary heart disease (CHD) risk in an urban Iranian population.
Their study categorized participants into four groups based on Rose Angina and ECG ischemia status, finding
that adding abnormal ECG findings to angina did not significantly increase CHD event risk prediction. However,
their analysis relied on the Minnesota Coding (MC) system, a standardized ECG classification method widely

Basic model ‘ Enhanced model
Women
Harrell’s C index (95% Cls) 0.84 (0.81,0.86) 0.85 (0.83,0.88)
Akaike information criterion 2395 2375
Added predictive values
Absolute IDI (95% Cls) 0.0280 (0.0100, 0.0460) P-value=0.002
Relative IDI (95% CIs) 0.2139 (- 0.0421, 0.4699) | P-value=0.102

Cutpoint-based NRI (95% CIs) | 0.1541 (0.0416, 0.2665) P-value=0.007
Cutpoint-free NRI (95% ClIs) 0.5575 (0.4653, 0.6496) P-value <0.001

(
(
(
(

Men
Harrell’s C index (95% Cls) 0.77 (0.74,0.79) 0.77 (0.75,0.79)
Akaike information criterion 3899 3896

Added predictive values
Absolute IDI (95% ClIs) 0.0030 (- 0.0022, 0.0081
Relative IDI (95% Cls) 0.0242 (- 0.0501, 0.0986
Cutpoint-based NRI (95% CIs) | 0.0154 (- 0.0601, 0.0908
Cutpoint-free NRI (95% Cls) 0.1138 (- 0.0322, 0.2598

P-value=0.261

P-value=0.523
P-value=0.690
P-value=0.127

)
)
)
)

>

Table 3. Predictive performances of the basic framingham’s “general CVD risk” algorithm vs. enhanced model.
Akaike information criterion (AIC) was used as a measure of model fit. The lower is the AIC the better will be
the model fitness. Difference in AIC> 10 was considered significant.
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Fig. 2. Forest plot of C-index with 95% confidence intervals for men and women for the baseline model versus
the ECG-enhanced model.

used in epidemiological studies, rather than raw ECG signal data®!. The MC system, introduced in 1960 and
expanded in 1983 to include serial comparisons, involves complex measurement protocols that make visual
coding time-consuming and prone to errors. In contrast, the current study leverages ECG signal feature
extraction to minimize measurement and coding errors, offering a more robust approach to risk prediction?.

Most population-based studies employ the MC system for ECG coding, which can be performed manually
or through automated methods. Both approaches, however, are susceptible to errors, and neither manual coding
by a single individual nor automated techniques can be considered fully reliable?”. Hadaegh et al. demonstrated
the additional value of ECG abnormalities beyond the FRS for CHD risk stratification in Middle Eastern women.
Their findings indicated that incorporating ECG abnormalities—specifically ST depression or T-wave changes—
into the FRS did not significantly improve C-statistics but enhanced predictive performance by 20.8% (95%
CI 5.0-38.9) using the cut-point-free Net Reclassification Improvement (NRI). Notably, among women, ECG
abnormalities were independently linked to intensified CHD risk only within the intermediate risk category;
however, their investigation used MC for ECG evaluation?.

The reliance on manual ECG pattern recognition and MC in population-based and clinical studies is
increasingly being questioned, as these methods are labor-intensive and error-prone?*. ECG signal processing, as
applied in the current study, offers a promising alternative. By extracting signal features directly from ECG data,
this approach reduces errors associated with visual coding and enhances the precision of CVD risk prediction.
This study underscores the potential of ECG signal analysis to refine risk stratification and improve outcomes in
epidemiological research, particularly for women in all risk groups.

Although this study is focused on adult patients, signal-based ECG analysis could potentially benefit rare
pediatric cardiac cases. Zhang et al. (2024) report a successful implantable cardioverter defibrillator intervention
in a child with Timothy syndrome, underlining the importance of accurate ECG interpretation in complex
congenital diseases®2. While this this finding is outside the primary scope of our integrative CVD risk modeling,
novel hardware developments may provide additional advantages. One such innovation is the use of phase-
modulated pump light combined with external Gaussian noise to improve the sensitivity of SERF magnetometers
(Ma et al., 2024). This approach could significantly enhance ECG capture by increasing the signal-to-noise ratio
and enabling the detection of low-amplitude components. As a result, it may increase the number of ECG-
derived features accessible for future modeling attempts*.
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Model with ECG signal features Reclassified
Increased | Decreased | Net correctly
< %5 | %5-%7.5 | %7.5-%20 | 2%20 | risk risk reclassified %
‘Women
Event
0-5% 22 2 3 0 5 0 18.5
5-7.5% 2 5 0 5 4 9.1
7.5-20% 4 9 44 21 21 13 10.3
>20% 0 0 9 47 0 9 -16.1
Non-evnet
0-5% 1464 70 16 1 87 0 5.6
5-7.5% 82 79 53 1 54 82 -13.0
7.5-20% 34 | 78 210 31 31 112 -229
>20% 1 1 46 90 0 48 -34.8
Men
Event
0-5% 7 0 0 0 0 0 0.0
5-7.5% 2 12 3 0 3 2 59
7.5-20% 0 3 110 5 5 3 1.7
>20% 0 0 4 130 0 4 -3.0
Non-evnet
0-5% 402 | 41 0 0 41 0 9.3
5-7.5% 57 |283 41 0 41 57 -42
7.5-20% 1 41 530 21 21 42 -35
>20% 0 0 22 267 0 22 -7.6

Table 4. Reclassification table comparing risk strata for models incorporating CVD risk factors with and
without ECG signal features. ACC/AHA, American College of Cardiology/American Heart Association.

Although our work focuses on improving CVD risk prediction using ECG-derived features, developing non-
invasive treatments strategies are also worth considering. A recent meta-analysis identified Shenfu injection as
a potential treatment for bradyarrhythmia (Wei et al., 2025). Improved risk stratification might assist identify
patients most likely to benefit from such medicines, emphasizing the relevance of integrating prediction models
to not only prognosis but also treatment selection and outcomes>*. Similarly to our integration of clinical features
and ECG, biosensor approaches such as those developed by Li et al. (2025) provide highly sensitive molecular
diagnostics, suggesting a multidisciplinary future for the early detection of CVD*.

Zhang et al. (2024) identified a protective effect of IncRNA AKO083884 via PKM2/HIF-la-mediated
macrophage reprogramming in viral myocarditis, demonstrating the increasing recognition of the function
of inflammatory and metabolic signaling in shaping ECG patterns. Our present model does not integrate
molecular biomarkers, but future research may benefit from including such mechanistic layers to improve both
interpretability and predictive performance®.

To improve model generalizability, additional variables like inflammatory markers should be incorporated.
Chen et al. (2024) found that the neutrophil-lymphocyte ratio predicts all-cause and cardiovascular mortality in
individuals with COPD?”. We acknowledge that these characteristics enhance the predictive power of the model
and increase generalizability. Although we acknowledge that these elements improve the model’s generalizability
and predictive power, they were not assessed in our study and were thus identified as a limitation of our study.
While the findings are valuable, a brief comment on the potential need for validation in other ethnic populations
would be appropriate. We acknowledging this limitation and suggesting the need for external validation of the
model and the selected features in diverse cohorts. Furthermore, missing ECG data is a study limitation that
could introduce selection bias.

Conclusions

In this study, the Minnesota Coding (MC) system and select ECG features were not employed; instead,
comprehensive ECG signal data were analyzed. This approach significantly enhanced the statistical and clinical
prediction of cardiovascular disease (CVD) risk in women, but no such effect was observed in men.
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Fig. 3. Risk reclassification counts of CVD after adding ECG features for men and women with events.
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