001     1048933
005     20251211202155.0
037 _ _ |a FZJ-2025-05030
100 1 _ |a Miller, Tatiana
|0 P:(DE-Juel1)181023
|b 0
|u fzj
111 2 _ |a Aging and Cognition Conference
|c Pavia
|d 2025-05-07 - 2025-05-10
|w Italy
245 _ _ |a White Matter Lesions spatial distribution patterns related to cardiovascular aging follow arterial supply territories
260 _ _ |c 2025
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1765445659_15760
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a White matter lesions (WML) in brain MRI scans are common in older adults and are linked to cognitive, mood, and motor disorders, as well as increased risks of dementia and stroke. These lesions are influenced by lifestyle and cardiovascular factors. To explore the relationship between cardiovascular health and WML spatial distribution, we analysed the similarity between participants using k-means clustering, based on WML center location, WML burden, and cardiovascular health status, in two population-based cohorts: 1000BRAINS (n=1,040, ages 18-85) and NAKO (n=27,559, ages 19-74). Cardiovascular health status was summarized using a ‘cardiovascular age’ score, which included age, sex, blood pressure, hypertension medication, smoking status, diabetes diagnosis, and cholesterol levels. We mapped the affected brain areas on the Digital 3D Brain MRI Arterial Territories Atlas and tested each cluster’s mean WML distribution, surpassing 95% bootstrap confidence.Our findings revealed five distinct WML spatial distribution patterns in each cohort, four of which were common across both. These patterns highlighted specific arterial territories with varying degrees of WML presence, providing evidence that WML spatial distributions are influenced by cardiovascular aging. Additionally, the medial lenticulostriate territory emerged as the first arterial region affected in normal aging.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
700 1 _ |a Bittner, Nora
|0 P:(DE-Juel1)166110
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Dellani, Paulo R.
|0 P:(DE-Juel1)180197
|b 2
|u fzj
700 1 _ |a Quabs, Julian
|0 P:(DE-Juel1)203396
|b 3
|u fzj
700 1 _ |a Caspers, Svenja
|0 P:(DE-Juel1)131675
|b 4
|u fzj
909 C O |o oai:juser.fz-juelich.de:1048933
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)181023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180197
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)203396
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131675
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21