001048938 001__ 1048938
001048938 005__ 20251211202155.0
001048938 037__ $$aFZJ-2025-05035
001048938 1001_ $$0P:(DE-Juel1)200212$$aZhukova, Natalia$$b0$$ufzj
001048938 1112_ $$aAging and Cognition Conference$$cPavia$$d2025-05-07 - 2025-05-10$$wItaly
001048938 245__ $$aReduced dynamic functional connectivity in higher ages: are older brains less adaptable?
001048938 260__ $$c2025
001048938 3367_ $$033$$2EndNote$$aConference Paper
001048938 3367_ $$2DataCite$$aOther
001048938 3367_ $$2BibTeX$$aINPROCEEDINGS
001048938 3367_ $$2DRIVER$$aconferenceObject
001048938 3367_ $$2ORCID$$aLECTURE_SPEECH
001048938 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1765445699_14051$$xAfter Call
001048938 520__ $$aStatic functional connectivity (FC) approaches, assuming constant interactions between brain regions, revealed important insights into the aging process. Nevertheless, recent research has indicated that a more sophisticated understanding of the time-varying nature of brain function may prove particularly useful in identifying biomarkers for healthy aging.The current study therefore investigated dynamic FC (dFC) in a large group of older adults (1000BRAINS; n=817; 373 females; 55-85 years; MAge=67±7). Time-varying correlation matrices and dFC states were extracted from resting-state fMRI using sliding windows and clustering. We examined both, temporal features of dFC states, e.g. duration and transitions, together with age-related differences in network architecture (17 networks Schaefer parcellation). We found four distinct dFC states, of which two showed agesensitive patterns. The first was distinguished by highly connected networks and became less prevalent with age. In contrast, the second state was characterized by reduced network connectivity, becoming more prevalent with age. Together with a decline in transition between states, the results underscore an age-related reduction in overall network communication and a reduced capacity for functional adaptation. The findings challenge the conventional understanding of brain network interactions by emphasizing the dynamic adaptability of the brain in explaining variations in cognitive functioning.
001048938 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001048938 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
001048938 7001_ $$0P:(DE-Juel1)180200$$aMendl-Heinisch, Camilla$$b1$$ufzj
001048938 7001_ $$0P:(DE-Juel1)145386$$aJockwitz, Christiane$$b2$$ufzj
001048938 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b3$$ufzj
001048938 909CO $$ooai:juser.fz-juelich.de:1048938$$popenaire$$pVDB$$pec_fundedresources
001048938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200212$$aForschungszentrum Jülich$$b0$$kFZJ
001048938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180200$$aForschungszentrum Jülich$$b1$$kFZJ
001048938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145386$$aForschungszentrum Jülich$$b2$$kFZJ
001048938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b3$$kFZJ
001048938 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001048938 9141_ $$y2025
001048938 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001048938 980__ $$aconf
001048938 980__ $$aVDB
001048938 980__ $$aI:(DE-Juel1)INM-1-20090406
001048938 980__ $$aUNRESTRICTED