001048966 001__ 1048966
001048966 005__ 20251211202155.0
001048966 0247_ $$2arXiv$$aarXiv:2511.10191
001048966 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05063
001048966 037__ $$aFZJ-2025-05063
001048966 088__ $$2arXiv$$aarXiv:2511.10191
001048966 1001_ $$0P:(DE-Juel1)192118$$aOld, Josias$$b0$$eCorresponding author$$ufzj
001048966 245__ $$aAddressable fault-tolerant universal quantum gate operations for high-rate lift-connected surface codes
001048966 260__ $$c2025
001048966 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1765435657_26509
001048966 3367_ $$2ORCID$$aWORKING_PAPER
001048966 3367_ $$028$$2EndNote$$aElectronic Article
001048966 3367_ $$2DRIVER$$apreprint
001048966 3367_ $$2BibTeX$$aARTICLE
001048966 3367_ $$2DataCite$$aOutput Types/Working Paper
001048966 500__ $$a13 pages, 12 Figures
001048966 520__ $$aQuantum low-density parity check (qLDPC) codes are among the leading candidates to realize error-corrected quantum memories with low qubit overhead. Potentially high encoding rates and large distance relative to their block size make them appealing for practical suppression of noise in near-term quantum computers. In addition to increased qubit-connectivity requirements compared to more conventional topological quantum error correcting codes, qLDPC codes remain notoriously hard to compute with. In this work, we introduce a construction to implement all Clifford quantum gate operations on the recently introduced lift-connected surface (LCS) codes (Old et al. 2024). These codes can be implemented in a 3D-local architecture and achieve asymptotic scaling $[[n, \mathcal{O}(n^{1/3}), \mathcal{O}(n^{1/3})]]$. In particular, LCS codes realize favorable instances with small numbers of qubits: For the $[[15,3,3]]$ LCS code, we provide deterministic fault-tolerant (FT) circuits of the logical gate set $\{\overline{H}_i, \overline{S}_i, \overline{C_i X_j}\}_{i,j \in (0,1,2)}$ based on flag qubits. By adding a procedure for FT magic state preparation, we show quantitatively how to realize an FT universal gate set in $d=3$ LCS codes. Numerical simulations indicate that our gate constructions can attain pseudothresholds in the range $p_{\mathrm{th}} \approx 4.8\cdot 10^{-3}-1.2\cdot 10^{-2}$ for circuit-level noise. The schemes use a moderate number of qubits and are therefore feasible for near-term experiments, facilitating progress for fault-tolerant error corrected logic in high-rate qLPDC codes.
001048966 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001048966 536__ $$0G:(DE-Juel1)BMBF-13N16073$$aBMBF 13N16073 - MUNIQC-Atoms - Neutralatom-basierter Quantencomputer-Demonstrator (BMBF-13N16073)$$cBMBF-13N16073$$x1
001048966 536__ $$0G:(BMBF)390534769$$aEXC 2004: Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x2
001048966 588__ $$aDataset connected to DataCite
001048966 7001_ $$0P:(DE-Juel1)201506$$aBechar, Juval$$b1
001048966 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b2$$ufzj
001048966 7001_ $$0P:(DE-Juel1)184903$$aHeußen, Sascha$$b3
001048966 8564_ $$uhttps://arxiv.org/abs/2511.10191
001048966 8564_ $$uhttps://juser.fz-juelich.de/record/1048966/files/old2025addressable.pdf$$yOpenAccess
001048966 909CO $$ooai:juser.fz-juelich.de:1048966$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001048966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192118$$aForschungszentrum Jülich$$b0$$kFZJ
001048966 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)192118$$aRWTH Aachen$$b0$$kRWTH
001048966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201506$$aForschungszentrum Jülich$$b1$$kFZJ
001048966 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)201506$$aRWTH Aachen$$b1$$kRWTH
001048966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b2$$kFZJ
001048966 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)179396$$aRWTH Aachen$$b2$$kRWTH
001048966 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)184903$$aExternal Institute$$b3$$kExtern
001048966 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001048966 9141_ $$y2025
001048966 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048966 920__ $$lyes
001048966 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001048966 980__ $$apreprint
001048966 980__ $$aVDB
001048966 980__ $$aUNRESTRICTED
001048966 980__ $$aI:(DE-Juel1)PGI-2-20110106
001048966 9801_ $$aFullTexts