| Hauptseite > Publikationsdatenbank > Addressable fault-tolerant universal quantum gate operations for high-rate lift-connected surface codes > print |
| 001 | 1048966 | ||
| 005 | 20251211202155.0 | ||
| 024 | 7 | _ | |a arXiv:2511.10191 |2 arXiv |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-05063 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-05063 |
| 088 | _ | _ | |a arXiv:2511.10191 |2 arXiv |
| 100 | 1 | _ | |a Old, Josias |0 P:(DE-Juel1)192118 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Addressable fault-tolerant universal quantum gate operations for high-rate lift-connected surface codes |
| 260 | _ | _ | |c 2025 |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1765435657_26509 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 500 | _ | _ | |a 13 pages, 12 Figures |
| 520 | _ | _ | |a Quantum low-density parity check (qLDPC) codes are among the leading candidates to realize error-corrected quantum memories with low qubit overhead. Potentially high encoding rates and large distance relative to their block size make them appealing for practical suppression of noise in near-term quantum computers. In addition to increased qubit-connectivity requirements compared to more conventional topological quantum error correcting codes, qLDPC codes remain notoriously hard to compute with. In this work, we introduce a construction to implement all Clifford quantum gate operations on the recently introduced lift-connected surface (LCS) codes (Old et al. 2024). These codes can be implemented in a 3D-local architecture and achieve asymptotic scaling $[[n, \mathcal{O}(n^{1/3}), \mathcal{O}(n^{1/3})]]$. In particular, LCS codes realize favorable instances with small numbers of qubits: For the $[[15,3,3]]$ LCS code, we provide deterministic fault-tolerant (FT) circuits of the logical gate set $\{\overline{H}_i, \overline{S}_i, \overline{C_i X_j}\}_{i,j \in (0,1,2)}$ based on flag qubits. By adding a procedure for FT magic state preparation, we show quantitatively how to realize an FT universal gate set in $d=3$ LCS codes. Numerical simulations indicate that our gate constructions can attain pseudothresholds in the range $p_{\mathrm{th}} \approx 4.8\cdot 10^{-3}-1.2\cdot 10^{-2}$ for circuit-level noise. The schemes use a moderate number of qubits and are therefore feasible for near-term experiments, facilitating progress for fault-tolerant error corrected logic in high-rate qLPDC codes. |
| 536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
| 536 | _ | _ | |a BMBF 13N16073 - MUNIQC-Atoms - Neutralatom-basierter Quantencomputer-Demonstrator (BMBF-13N16073) |0 G:(DE-Juel1)BMBF-13N16073 |c BMBF-13N16073 |x 1 |
| 536 | _ | _ | |a EXC 2004: Matter and Light for Quantum Computing (ML4Q) (390534769) |0 G:(BMBF)390534769 |c 390534769 |x 2 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 700 | 1 | _ | |a Bechar, Juval |0 P:(DE-Juel1)201506 |b 1 |
| 700 | 1 | _ | |a Müller, Markus |0 P:(DE-Juel1)179396 |b 2 |u fzj |
| 700 | 1 | _ | |a Heußen, Sascha |0 P:(DE-Juel1)184903 |b 3 |
| 856 | 4 | _ | |u https://arxiv.org/abs/2511.10191 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1048966/files/old2025addressable.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1048966 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)192118 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)192118 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)201506 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-Juel1)201506 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)179396 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)179396 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-Juel1)184903 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|