001     1048966
005     20251211202155.0
024 7 _ |a arXiv:2511.10191
|2 arXiv
024 7 _ |a 10.34734/FZJ-2025-05063
|2 datacite_doi
037 _ _ |a FZJ-2025-05063
088 _ _ |a arXiv:2511.10191
|2 arXiv
100 1 _ |a Old, Josias
|0 P:(DE-Juel1)192118
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Addressable fault-tolerant universal quantum gate operations for high-rate lift-connected surface codes
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1765435657_26509
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 13 pages, 12 Figures
520 _ _ |a Quantum low-density parity check (qLDPC) codes are among the leading candidates to realize error-corrected quantum memories with low qubit overhead. Potentially high encoding rates and large distance relative to their block size make them appealing for practical suppression of noise in near-term quantum computers. In addition to increased qubit-connectivity requirements compared to more conventional topological quantum error correcting codes, qLDPC codes remain notoriously hard to compute with. In this work, we introduce a construction to implement all Clifford quantum gate operations on the recently introduced lift-connected surface (LCS) codes (Old et al. 2024). These codes can be implemented in a 3D-local architecture and achieve asymptotic scaling $[[n, \mathcal{O}(n^{1/3}), \mathcal{O}(n^{1/3})]]$. In particular, LCS codes realize favorable instances with small numbers of qubits: For the $[[15,3,3]]$ LCS code, we provide deterministic fault-tolerant (FT) circuits of the logical gate set $\{\overline{H}_i, \overline{S}_i, \overline{C_i X_j}\}_{i,j \in (0,1,2)}$ based on flag qubits. By adding a procedure for FT magic state preparation, we show quantitatively how to realize an FT universal gate set in $d=3$ LCS codes. Numerical simulations indicate that our gate constructions can attain pseudothresholds in the range $p_{\mathrm{th}} \approx 4.8\cdot 10^{-3}-1.2\cdot 10^{-2}$ for circuit-level noise. The schemes use a moderate number of qubits and are therefore feasible for near-term experiments, facilitating progress for fault-tolerant error corrected logic in high-rate qLPDC codes.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a BMBF 13N16073 - MUNIQC-Atoms - Neutralatom-basierter Quantencomputer-Demonstrator (BMBF-13N16073)
|0 G:(DE-Juel1)BMBF-13N16073
|c BMBF-13N16073
|x 1
536 _ _ |a EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)
|0 G:(BMBF)390534769
|c 390534769
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Bechar, Juval
|0 P:(DE-Juel1)201506
|b 1
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 2
|u fzj
700 1 _ |a Heußen, Sascha
|0 P:(DE-Juel1)184903
|b 3
856 4 _ |u https://arxiv.org/abs/2511.10191
856 4 _ |u https://juser.fz-juelich.de/record/1048966/files/old2025addressable.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048966
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192118
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)192118
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)201506
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)201506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179396
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)179396
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-Juel1)184903
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21