001048967 001__ 1048967
001048967 005__ 20251211202155.0
001048967 0247_ $$2arXiv$$aarXiv:2506.09029
001048967 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05064
001048967 037__ $$aFZJ-2025-05064
001048967 088__ $$2arXiv$$aarXiv:2506.09029
001048967 1001_ $$0P:(DE-Juel1)192118$$aOld, Josias$$b0$$eCorresponding author$$ufzj
001048967 245__ $$aFault-Tolerant Stabilizer Measurements in Surface Codes with Three-Qubit Gates
001048967 260__ $$c2025
001048967 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1765435691_28418
001048967 3367_ $$2ORCID$$aWORKING_PAPER
001048967 3367_ $$028$$2EndNote$$aElectronic Article
001048967 3367_ $$2DRIVER$$apreprint
001048967 3367_ $$2BibTeX$$aARTICLE
001048967 3367_ $$2DataCite$$aOutput Types/Working Paper
001048967 500__ $$a7 pages, 6 figures
001048967 520__ $$aQuantum error correction (QEC) is considered a deciding component in enabling practical quantum computing. Stabilizer codes, and in particular topological surface codes, are promising candidates for implementing QEC by redundantly encoding quantum information. While it is widely believed that a strictly fault-tolerant protocol can only be implemented using single- and two-qubit gates, several quantum computing platforms, based on trapped ions, neutral atoms and also superconducting qubits support native multi-qubit operations, e.g. using multi-ion entangling gates, Rydberg blockade or parallelized tunable couplers, respectively. In this work, we show that stabilizer measurement circuits for unrotated surface codes can be fault-tolerant using single auxiliary qubits and three-qubit gates. These gates enable lower-depth circuits leading to fewer fault locations and potentially shorter QEC cycle times. Concretely, we find that in an optimistic parameter regime where fidelities of three-qubit gates are the same as those of two-qubit gates, the logical error rate can be up to one order of magnitude lower and the threshold can be significantly higher, increasing from $\approx 0.76 \%$ to $\approx 1.05 \%$. Our results, which are applicable to a wide range of platforms, thereby motivate further investigation into multi-qubit gates as components for fault-tolerant QEC, as they can lead to substantial advantages in terms of time and physical qubit resources required to reach a target logical error rate.
001048967 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001048967 536__ $$0G:(DE-Juel1)BMBF-13N16073$$aBMBF 13N16073 - MUNIQC-Atoms - Neutralatom-basierter Quantencomputer-Demonstrator (BMBF-13N16073)$$cBMBF-13N16073$$x1
001048967 536__ $$0G:(BMBF)390534769$$aEXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x2
001048967 588__ $$aDataset connected to arXivarXiv
001048967 7001_ $$0P:(DE-HGF)0$$aTasler, Stephan$$b1
001048967 7001_ $$0P:(DE-HGF)0$$aHartmann, Michael J.$$b2
001048967 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b3$$ufzj
001048967 8564_ $$uhttps://arxiv.org/abs/2506.09029
001048967 8564_ $$uhttps://juser.fz-juelich.de/record/1048967/files/old2025fault.pdf$$yOpenAccess
001048967 909CO $$ooai:juser.fz-juelich.de:1048967$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001048967 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192118$$aForschungszentrum Jülich$$b0$$kFZJ
001048967 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)192118$$aRWTH Aachen$$b0$$kRWTH
001048967 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b3$$kFZJ
001048967 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)179396$$aRWTH Aachen$$b3$$kRWTH
001048967 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001048967 9141_ $$y2025
001048967 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048967 920__ $$lyes
001048967 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001048967 980__ $$apreprint
001048967 980__ $$aVDB
001048967 980__ $$aUNRESTRICTED
001048967 980__ $$aI:(DE-Juel1)PGI-2-20110106
001048967 9801_ $$aFullTexts