001     1048967
005     20251211202155.0
024 7 _ |a arXiv:2506.09029
|2 arXiv
024 7 _ |a 10.34734/FZJ-2025-05064
|2 datacite_doi
037 _ _ |a FZJ-2025-05064
088 _ _ |a arXiv:2506.09029
|2 arXiv
100 1 _ |a Old, Josias
|0 P:(DE-Juel1)192118
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Fault-Tolerant Stabilizer Measurements in Surface Codes with Three-Qubit Gates
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1765435691_28418
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 7 pages, 6 figures
520 _ _ |a Quantum error correction (QEC) is considered a deciding component in enabling practical quantum computing. Stabilizer codes, and in particular topological surface codes, are promising candidates for implementing QEC by redundantly encoding quantum information. While it is widely believed that a strictly fault-tolerant protocol can only be implemented using single- and two-qubit gates, several quantum computing platforms, based on trapped ions, neutral atoms and also superconducting qubits support native multi-qubit operations, e.g. using multi-ion entangling gates, Rydberg blockade or parallelized tunable couplers, respectively. In this work, we show that stabilizer measurement circuits for unrotated surface codes can be fault-tolerant using single auxiliary qubits and three-qubit gates. These gates enable lower-depth circuits leading to fewer fault locations and potentially shorter QEC cycle times. Concretely, we find that in an optimistic parameter regime where fidelities of three-qubit gates are the same as those of two-qubit gates, the logical error rate can be up to one order of magnitude lower and the threshold can be significantly higher, increasing from $\approx 0.76 \%$ to $\approx 1.05 \%$. Our results, which are applicable to a wide range of platforms, thereby motivate further investigation into multi-qubit gates as components for fault-tolerant QEC, as they can lead to substantial advantages in terms of time and physical qubit resources required to reach a target logical error rate.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a BMBF 13N16073 - MUNIQC-Atoms - Neutralatom-basierter Quantencomputer-Demonstrator (BMBF-13N16073)
|0 G:(DE-Juel1)BMBF-13N16073
|c BMBF-13N16073
|x 1
536 _ _ |a EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)
|0 G:(BMBF)390534769
|c 390534769
|x 2
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Tasler, Stephan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hartmann, Michael J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 3
|u fzj
856 4 _ |u https://arxiv.org/abs/2506.09029
856 4 _ |u https://juser.fz-juelich.de/record/1048967/files/old2025fault.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048967
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192118
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)192118
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179396
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21