001048969 001__ 1048969
001048969 005__ 20251211202155.0
001048969 0247_ $$2arXiv$$aarXiv:2506.09028
001048969 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05066
001048969 037__ $$aFZJ-2025-05066
001048969 088__ $$2arXiv$$aarXiv:2506.09028
001048969 1001_ $$0P:(DE-HGF)0$$aTasler, Stephan$$b0$$eCorresponding author
001048969 245__ $$aOptimizing Superconducting Three-Qubit Gates for Surface-Code Error Correction
001048969 260__ $$c2025
001048969 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1765435721_28636
001048969 3367_ $$2ORCID$$aWORKING_PAPER
001048969 3367_ $$028$$2EndNote$$aElectronic Article
001048969 3367_ $$2DRIVER$$apreprint
001048969 3367_ $$2BibTeX$$aARTICLE
001048969 3367_ $$2DataCite$$aOutput Types/Working Paper
001048969 500__ $$a12 pages, 11 figures
001048969 520__ $$aQuantum error correction (QEC) is one of the crucial building blocks for developing quantum computers that have significant potential for reaching a quantum advantage in applications. Prominent candidates for QEC are stabilizer codes for which periodic readout of stabilizer operators is typically implemented via successive two-qubit entangling gates, and is repeated many times during a computation. To improve QEC performance, it is thus beneficial to make the stabilizer readout faster and less prone to fault-tolerance-breaking errors. Here we design a 3-qubit CZZ gate for superconducting transmon qubits that maps the parity of two data qubits onto one measurement qubit in a single step. We find that the gate can be executed in a duration of $35\,$ns with a fidelity of F$=99.96 \, \%$. To optimize the gate, we use an error model obtained from the microscopic gate simulation to systematically suppress Pauli errors that are particularly harmful to the QEC protocol. Using this error model, we investigate the implementation of this 3-qubit gate in a surface code syndrome readout schedule. We find that for the rotated surface code, the implementation of CZZ gates increases the error threshold by nearly 50\% to $\approx 1.2\,\%$ and decreases the logical error rate, in the experimental relevant regime, by up to one order of magnitude, compared to the standard CZ readout protocol. We also show that for the unrotated surface code, strictly fault-tolerant readout schedules can be found. This opens a new perspective for below-threshold surface-code error correction, where it can be advantageous to use multi-qubit gates instead of two-qubit gates to obtain a better QEC performance.
001048969 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001048969 536__ $$0G:(DE-Juel1)BMBF-13N16073$$aBMBF 13N16073 - MUNIQC-Atoms - Neutralatom-basierter Quantencomputer-Demonstrator (BMBF-13N16073)$$cBMBF-13N16073$$x1
001048969 588__ $$aDataset connected to arXivarXiv
001048969 7001_ $$0P:(DE-Juel1)192118$$aOld, Josias$$b1$$eCorresponding author$$ufzj
001048969 7001_ $$0P:(DE-HGF)0$$aHeunisch, Lukas$$b2
001048969 7001_ $$0P:(DE-HGF)0$$aFeulner, Verena$$b3
001048969 7001_ $$0P:(DE-HGF)0$$aEckstein, Timo$$b4
001048969 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b5$$ufzj
001048969 7001_ $$0P:(DE-HGF)0$$aHartmann, Michael J.$$b6
001048969 8564_ $$uhttps://arxiv.org/abs/2506.09028
001048969 8564_ $$uhttps://juser.fz-juelich.de/record/1048969/files/tasler2025optimizing.pdf$$yOpenAccess
001048969 909CO $$ooai:juser.fz-juelich.de:1048969$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001048969 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Friedrich-Alexander-Universität Erlangen Nürnberg$$b0
001048969 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192118$$aForschungszentrum Jülich$$b1$$kFZJ
001048969 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)192118$$aRWTH Aachen$$b1$$kRWTH
001048969 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b5$$kFZJ
001048969 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)179396$$aRWTH Aachen$$b5$$kRWTH
001048969 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001048969 9141_ $$y2025
001048969 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048969 920__ $$lyes
001048969 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001048969 980__ $$apreprint
001048969 980__ $$aVDB
001048969 980__ $$aUNRESTRICTED
001048969 980__ $$aI:(DE-Juel1)PGI-2-20110106
001048969 9801_ $$aFullTexts