001     1048969
005     20251211202155.0
024 7 _ |a arXiv:2506.09028
|2 arXiv
024 7 _ |a 10.34734/FZJ-2025-05066
|2 datacite_doi
037 _ _ |a FZJ-2025-05066
088 _ _ |a arXiv:2506.09028
|2 arXiv
100 1 _ |a Tasler, Stephan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Optimizing Superconducting Three-Qubit Gates for Surface-Code Error Correction
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1765435721_28636
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 12 pages, 11 figures
520 _ _ |a Quantum error correction (QEC) is one of the crucial building blocks for developing quantum computers that have significant potential for reaching a quantum advantage in applications. Prominent candidates for QEC are stabilizer codes for which periodic readout of stabilizer operators is typically implemented via successive two-qubit entangling gates, and is repeated many times during a computation. To improve QEC performance, it is thus beneficial to make the stabilizer readout faster and less prone to fault-tolerance-breaking errors. Here we design a 3-qubit CZZ gate for superconducting transmon qubits that maps the parity of two data qubits onto one measurement qubit in a single step. We find that the gate can be executed in a duration of $35\,$ns with a fidelity of F$=99.96 \, \%$. To optimize the gate, we use an error model obtained from the microscopic gate simulation to systematically suppress Pauli errors that are particularly harmful to the QEC protocol. Using this error model, we investigate the implementation of this 3-qubit gate in a surface code syndrome readout schedule. We find that for the rotated surface code, the implementation of CZZ gates increases the error threshold by nearly 50\% to $\approx 1.2\,\%$ and decreases the logical error rate, in the experimental relevant regime, by up to one order of magnitude, compared to the standard CZ readout protocol. We also show that for the unrotated surface code, strictly fault-tolerant readout schedules can be found. This opens a new perspective for below-threshold surface-code error correction, where it can be advantageous to use multi-qubit gates instead of two-qubit gates to obtain a better QEC performance.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a BMBF 13N16073 - MUNIQC-Atoms - Neutralatom-basierter Quantencomputer-Demonstrator (BMBF-13N16073)
|0 G:(DE-Juel1)BMBF-13N16073
|c BMBF-13N16073
|x 1
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Old, Josias
|0 P:(DE-Juel1)192118
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Heunisch, Lukas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Feulner, Verena
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eckstein, Timo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 5
|u fzj
700 1 _ |a Hartmann, Michael J.
|0 P:(DE-HGF)0
|b 6
856 4 _ |u https://arxiv.org/abs/2506.09028
856 4 _ |u https://juser.fz-juelich.de/record/1048969/files/tasler2025optimizing.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048969
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Friedrich-Alexander-Universität Erlangen Nürnberg
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192118
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)192118
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)179396
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21