001048970 001__ 1048970 001048970 005__ 20251211202155.0 001048970 0247_ $$2arXiv$$aarXiv:2512.00843 001048970 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05067 001048970 037__ $$aFZJ-2025-05067 001048970 088__ $$2arXiv$$aarXiv:2512.00843 001048970 1001_ $$0P:(DE-Juel1)190763$$aLocher, David$$b0$$eCorresponding author$$ufzj 001048970 245__ $$aMultiqubit Rydberg Gates for Quantum Error Correction 001048970 260__ $$c2025 001048970 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1765437639_26509 001048970 3367_ $$2ORCID$$aWORKING_PAPER 001048970 3367_ $$028$$2EndNote$$aElectronic Article 001048970 3367_ $$2DRIVER$$apreprint 001048970 3367_ $$2BibTeX$$aARTICLE 001048970 3367_ $$2DataCite$$aOutput Types/Working Paper 001048970 500__ $$a25 pages, 16 figures 001048970 520__ $$aMultiqubit gates that involve three or more qubits are usually thought to be of little significance for fault-tolerant quantum error correction because single gate faults can lead to high-weight correlated errors. However, recent works have shown that multiqubit gates can be beneficial for measurement-free fault-tolerant quantum error correction and for fault-tolerant stabilizer readout in unrotated surface codes. In this work, we investigate multiqubit Rydberg gates that are useful for fault-tolerant quantum error correction in single-species neutral-atom platforms and can be implemented with a single, non-addressed laser pulse. We develop an open-source Python package to generate analytical, few-parameter pulses that implement the desired gates while minimizing gate errors due to Rydberg-state decay. The tool also allows us to identify parameter-optimal pulses, characterized by a minimal parameter count for the pulse ansatz. Measurement-free quantum error correction protocols require CCZ gates, which we analyze for atoms arranged in symmetric and asymmetric configurations. We investigate the performance of these schemes for various single-, two-, and three-qubit gate error rates, showing that break-even performance of measurement-free QEC is within reach of current hardware. Moreover, we study Floquet quantum error correction protocols that comprise two-body stabilizer measurements. Those can be realized using global three-qubit gates, and we show that this can lead to a significant reduction in shuttling operations. Simulations with realistic circuit-level noise indicate that applying three-qubit gates for stabilizer measurements in Floquet codes can yield competitive logical qubit performance in experimentally relevant error regimes. 001048970 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0 001048970 536__ $$0G:(DE-Juel1)BMBF-13N16073$$aBMBF 13N16073 - MUNIQC-Atoms - Neutralatom-basierter Quantencomputer-Demonstrator (BMBF-13N16073)$$cBMBF-13N16073$$x1 001048970 588__ $$aDataset connected to arXivarXiv 001048970 7001_ $$0P:(DE-Juel1)192118$$aOld, Josias$$b1$$ufzj 001048970 7001_ $$0P:(DE-HGF)0$$aBrechtelsbauer, Katharina$$b2 001048970 7001_ $$0P:(DE-Juel1)206928$$aHolschbach, Jakob$$b3 001048970 7001_ $$0P:(DE-HGF)0$$aBüchler, Hans Peter$$b4 001048970 7001_ $$0P:(DE-HGF)0$$aWeber, Sebastian$$b5 001048970 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b6$$ufzj 001048970 8564_ $$uhttps://arxiv.org/abs/2512.00843 001048970 8564_ $$uhttps://juser.fz-juelich.de/record/1048970/files/locher2025multiqubit.pdf$$yOpenAccess 001048970 909CO $$ooai:juser.fz-juelich.de:1048970$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery 001048970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190763$$aForschungszentrum Jülich$$b0$$kFZJ 001048970 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)190763$$aRWTH Aachen$$b0$$kRWTH 001048970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192118$$aForschungszentrum Jülich$$b1$$kFZJ 001048970 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)192118$$aRWTH Aachen$$b1$$kRWTH 001048970 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Universität Stuttgart$$b2 001048970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b6$$kFZJ 001048970 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)179396$$aRWTH Aachen$$b6$$kRWTH 001048970 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 001048970 9141_ $$y2025 001048970 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001048970 920__ $$lyes 001048970 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 001048970 980__ $$apreprint 001048970 980__ $$aVDB 001048970 980__ $$aUNRESTRICTED 001048970 980__ $$aI:(DE-Juel1)PGI-2-20110106 001048970 9801_ $$aFullTexts