| 001 | 1048970 | ||
| 005 | 20251211202155.0 | ||
| 024 | 7 | _ | |a arXiv:2512.00843 |2 arXiv |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-05067 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-05067 |
| 088 | _ | _ | |a arXiv:2512.00843 |2 arXiv |
| 100 | 1 | _ | |a Locher, David |0 P:(DE-Juel1)190763 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Multiqubit Rydberg Gates for Quantum Error Correction |
| 260 | _ | _ | |c 2025 |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1765437639_26509 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 500 | _ | _ | |a 25 pages, 16 figures |
| 520 | _ | _ | |a Multiqubit gates that involve three or more qubits are usually thought to be of little significance for fault-tolerant quantum error correction because single gate faults can lead to high-weight correlated errors. However, recent works have shown that multiqubit gates can be beneficial for measurement-free fault-tolerant quantum error correction and for fault-tolerant stabilizer readout in unrotated surface codes. In this work, we investigate multiqubit Rydberg gates that are useful for fault-tolerant quantum error correction in single-species neutral-atom platforms and can be implemented with a single, non-addressed laser pulse. We develop an open-source Python package to generate analytical, few-parameter pulses that implement the desired gates while minimizing gate errors due to Rydberg-state decay. The tool also allows us to identify parameter-optimal pulses, characterized by a minimal parameter count for the pulse ansatz. Measurement-free quantum error correction protocols require CCZ gates, which we analyze for atoms arranged in symmetric and asymmetric configurations. We investigate the performance of these schemes for various single-, two-, and three-qubit gate error rates, showing that break-even performance of measurement-free QEC is within reach of current hardware. Moreover, we study Floquet quantum error correction protocols that comprise two-body stabilizer measurements. Those can be realized using global three-qubit gates, and we show that this can lead to a significant reduction in shuttling operations. Simulations with realistic circuit-level noise indicate that applying three-qubit gates for stabilizer measurements in Floquet codes can yield competitive logical qubit performance in experimentally relevant error regimes. |
| 536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
| 536 | _ | _ | |a BMBF 13N16073 - MUNIQC-Atoms - Neutralatom-basierter Quantencomputer-Demonstrator (BMBF-13N16073) |0 G:(DE-Juel1)BMBF-13N16073 |c BMBF-13N16073 |x 1 |
| 588 | _ | _ | |a Dataset connected to arXivarXiv |
| 700 | 1 | _ | |a Old, Josias |0 P:(DE-Juel1)192118 |b 1 |u fzj |
| 700 | 1 | _ | |a Brechtelsbauer, Katharina |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Holschbach, Jakob |0 P:(DE-Juel1)206928 |b 3 |
| 700 | 1 | _ | |a Büchler, Hans Peter |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Weber, Sebastian |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Müller, Markus |0 P:(DE-Juel1)179396 |b 6 |u fzj |
| 856 | 4 | _ | |u https://arxiv.org/abs/2512.00843 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1048970/files/locher2025multiqubit.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1048970 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190763 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)190763 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)192118 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-Juel1)192118 |
| 910 | 1 | _ | |a Universität Stuttgart |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)179396 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 6 |6 P:(DE-Juel1)179396 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|