001     1048970
005     20251211202155.0
024 7 _ |a arXiv:2512.00843
|2 arXiv
024 7 _ |a 10.34734/FZJ-2025-05067
|2 datacite_doi
037 _ _ |a FZJ-2025-05067
088 _ _ |a arXiv:2512.00843
|2 arXiv
100 1 _ |a Locher, David
|0 P:(DE-Juel1)190763
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Multiqubit Rydberg Gates for Quantum Error Correction
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1765437639_26509
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 25 pages, 16 figures
520 _ _ |a Multiqubit gates that involve three or more qubits are usually thought to be of little significance for fault-tolerant quantum error correction because single gate faults can lead to high-weight correlated errors. However, recent works have shown that multiqubit gates can be beneficial for measurement-free fault-tolerant quantum error correction and for fault-tolerant stabilizer readout in unrotated surface codes. In this work, we investigate multiqubit Rydberg gates that are useful for fault-tolerant quantum error correction in single-species neutral-atom platforms and can be implemented with a single, non-addressed laser pulse. We develop an open-source Python package to generate analytical, few-parameter pulses that implement the desired gates while minimizing gate errors due to Rydberg-state decay. The tool also allows us to identify parameter-optimal pulses, characterized by a minimal parameter count for the pulse ansatz. Measurement-free quantum error correction protocols require CCZ gates, which we analyze for atoms arranged in symmetric and asymmetric configurations. We investigate the performance of these schemes for various single-, two-, and three-qubit gate error rates, showing that break-even performance of measurement-free QEC is within reach of current hardware. Moreover, we study Floquet quantum error correction protocols that comprise two-body stabilizer measurements. Those can be realized using global three-qubit gates, and we show that this can lead to a significant reduction in shuttling operations. Simulations with realistic circuit-level noise indicate that applying three-qubit gates for stabilizer measurements in Floquet codes can yield competitive logical qubit performance in experimentally relevant error regimes.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a BMBF 13N16073 - MUNIQC-Atoms - Neutralatom-basierter Quantencomputer-Demonstrator (BMBF-13N16073)
|0 G:(DE-Juel1)BMBF-13N16073
|c BMBF-13N16073
|x 1
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Old, Josias
|0 P:(DE-Juel1)192118
|b 1
|u fzj
700 1 _ |a Brechtelsbauer, Katharina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Holschbach, Jakob
|0 P:(DE-Juel1)206928
|b 3
700 1 _ |a Büchler, Hans Peter
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Weber, Sebastian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 6
|u fzj
856 4 _ |u https://arxiv.org/abs/2512.00843
856 4 _ |u https://juser.fz-juelich.de/record/1048970/files/locher2025multiqubit.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048970
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190763
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)190763
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192118
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)192118
910 1 _ |a Universität Stuttgart
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)179396
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21