001048975 001__ 1048975
001048975 005__ 20251209202151.0
001048975 037__ $$aFZJ-2025-05070
001048975 1001_ $$0P:(DE-Juel1)177779$$aNandi, Shibabrata$$b0$$ufzj
001048975 1112_ $$a(Digital) Institute Seminar JCNS-2$$cForschungszentrum Jülich, JCNS$$wGermany
001048975 245__ $$aMagnetic and Transport Properties of Mn3X (X = Ge, Sn) Weyl Semimetal$$f2025-12-11 - 
001048975 260__ $$c2025
001048975 3367_ $$033$$2EndNote$$aConference Paper
001048975 3367_ $$2DataCite$$aOther
001048975 3367_ $$2BibTeX$$aINPROCEEDINGS
001048975 3367_ $$2ORCID$$aLECTURE_SPEECH
001048975 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1765263584_6842$$xInvited
001048975 3367_ $$2DINI$$aOther
001048975 520__ $$aTopological quantum materials have garnered considerable attention since their discovery, owing to the observed anomalous transport properties that originate from their non-zero Berry curvature. Mn3X compounds show interesting physical properties like Anomalous Hall Effect (AHE), Planar Hall effect (PHE), chiral magnetic effect, and non-local transport properties due to non-vanishing Berry flux emerging from the Weyl points1. It is widely believed that the magnetic structure and Weyl properties are intimately connected.However, the observation of negative longitudinal magnetoresistance (LMR), AHE, and PHE in Mn3X compounds and its connection with the chiral magnetic effect is much debated in the literature. In this talk, I will give a brief overview of the current understanding of the negative LMR, AHE, and PHE as observed in Mn3Sn and Mn3Ge compounds.References:[1] S. Nakatsuji, N. Kiyohara and T. Higo, Nature (London) 527, 212 (2015)[2] Y. Song, Y. Hao, and S. Wang, Phys. Rev. B 101, 144422 (2020) [3] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, and S. S. P. Parkin, Sci. Adv. 2, e1501870 (2016) [4] N. Kumar, S. N. Guin, C. Felser, and C. Shekhar, Phys. Rev. B 98, 041103(R) (2018)
001048975 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001048975 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001048975 909CO $$ooai:juser.fz-juelich.de:1048975$$pVDB
001048975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177779$$aForschungszentrum Jülich$$b0$$kFZJ
001048975 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001048975 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001048975 9141_ $$y2025
001048975 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001048975 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001048975 980__ $$atalk
001048975 980__ $$aVDB
001048975 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001048975 980__ $$aI:(DE-82)080009_20140620
001048975 980__ $$aUNRESTRICTED