001048983 001__ 1048983
001048983 005__ 20260107202516.0
001048983 0247_ $$2doi$$a10.1002/pip.70016
001048983 0247_ $$2ISSN$$a1062-7995
001048983 0247_ $$2ISSN$$a1099-159X
001048983 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05078
001048983 037__ $$aFZJ-2025-05078
001048983 082__ $$a690
001048983 1001_ $$0P:(DE-Juel1)199037$$aYacouba, Mohamed Issifi$$b0$$eCorresponding author
001048983 245__ $$aAchieving High Efficiencies for Silicon Heterojunction Solar Cells Using Silver‐Free Metallization
001048983 260__ $$aChichester$$bWiley$$c2025
001048983 3367_ $$2DRIVER$$aarticle
001048983 3367_ $$2DataCite$$aOutput Types/Journal article
001048983 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767788755_8541
001048983 3367_ $$2BibTeX$$aARTICLE
001048983 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048983 3367_ $$00$$2EndNote$$aJournal Article
001048983 520__ $$aThis work investigates the influence of the metallization of low-temperature Cu paste and AgCu paste on the performance of SHJ solar cells through a comprehensive study of two techniques—screen printing (SP) and dispensing. The research successfully applied Cu and AgCu pastes as metal contacts on SHJ solar cells, yielding promising results. Notably, cells with AgCu paste SP on the front side and Ag paste SP on the rear side achieved a 0.13% efficiency gain over reference Ag SP bifacial cells. Moreover, cells with AgCu paste SP on the front side and Cu paste SP on the rear side reached an efficiency of 23.6%, just 0.35% lower than the reference cells, while saving approximately 70% of Ag paste. Cells with Cu paste SP on both sides recorded an average efficiency of 22.4% and a maximum of 23.08%, the highest efficiency reported for cells using Cu SP on both sides (zero Ag). Cells with Cu dispensing on the rear side also demonstrated superior performance compared to cells with Cu SP on the rear side. Along, we assessed the finger-printed characteristics of the three pastes and the performance of SHJ solar cells under various annealing conditions including the Cu annealing conditions (300°C for 5 s). The solar cells maintained stable performance up to 280°C for 5 s, with degradation observed above this temperature, and light soaking partially recovered some of the efficiency loss. A 0.2% drop persisted under Cu annealing conditions, but light soaking reversed this effect back to the original efficiency. This work advances SHJ solar cell technology by highlighting the potential of AgCu and Cu pastes to efficiently replace or reduce Ag paste consumption in SHJ solar cell metallization.
001048983 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001048983 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001048983 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b1
001048983 7001_ $$0P:(DE-Juel1)191387$$aLiu, Yanxin$$b2
001048983 7001_ $$0P:(DE-Juel1)180902$$aGattermann, Henrike$$b3$$ufzj
001048983 7001_ $$0P:(DE-Juel1)170055$$aLauterbach, Volker$$b4$$ufzj
001048983 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b5
001048983 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b6$$ufzj
001048983 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b7$$eCorresponding author$$ufzj
001048983 773__ $$0PERI:(DE-600)2023295-0$$a10.1002/pip.70016$$gVol. 33, no. 11, p. 1223 - 1235$$n11$$p1223 - 1235$$tProgress in photovoltaics$$v33$$x1062-7995$$y2025
001048983 8564_ $$uhttps://juser.fz-juelich.de/record/1048983/files/Progress%20in%20Photovoltaics%20-%202025%20-%20Yacouba%20-%20Achieving%20High%20Efficiencies%20for%20Silicon%20Heterojunction%20Solar%20Cells%20Using.pdf$$yOpenAccess
001048983 8767_ $$d2025-12-09$$eHybrid-OA$$jDEAL
001048983 909CO $$ooai:juser.fz-juelich.de:1048983$$popenaire$$popen_access$$pOpenAPC_DEAL$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001048983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)199037$$aForschungszentrum Jülich$$b0$$kFZJ
001048983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b1$$kFZJ
001048983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191387$$aForschungszentrum Jülich$$b2$$kFZJ
001048983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180902$$aForschungszentrum Jülich$$b3$$kFZJ
001048983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170055$$aForschungszentrum Jülich$$b4$$kFZJ
001048983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich$$b5$$kFZJ
001048983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b6$$kFZJ
001048983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b7$$kFZJ
001048983 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001048983 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001048983 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001048983 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001048983 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
001048983 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-21
001048983 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
001048983 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-21$$wger
001048983 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
001048983 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001048983 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048983 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001048983 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001048983 920__ $$lyes
001048983 9201_ $$0I:(DE-Juel1)IMD-3-20101013$$kIMD-3$$lPhotovoltaik$$x0
001048983 980__ $$ajournal
001048983 980__ $$aVDB
001048983 980__ $$aUNRESTRICTED
001048983 980__ $$aI:(DE-Juel1)IMD-3-20101013
001048983 980__ $$aAPC
001048983 9801_ $$aAPC
001048983 9801_ $$aFullTexts