001     1049047
005     20251211202156.0
024 7 _ |a 10.1038/s41598-025-19588-1
|2 doi
024 7 _ |a 10.34734/FZJ-2025-05142
|2 datacite_doi
037 _ _ |a FZJ-2025-05142
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a deSteiguer, Abby J
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Salivary DNA methylation and pubertal development in adolescents.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765458850_30780
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Individuals differ in when and how quickly they experience puberty, and these differences in pubertal development are associated with lifelong health and mortality. We conducted sex-specific epigenome-wide association analyses of salivary DNA-methylation (DNAm) samples from ~ 3500 adolescents and identified 373 DNAm sites significantly associated with pubertal age, pace of pubertal development, and/or onset of early puberty by age 9. These DNAm signals converged with results from previous genomic and transcriptomic studies of puberty and with pan-mammalian epigenomic studies of age. Genomic annotations and trait enrichment results implicate child maltreatment and toxicant exposures as relevant for puberty. We developed a novel DNAm biomarker of pubertal age that was consistently associated with earlier age at menarche across three adolescent cohorts. Saliva DNAm is sensitive to signatures of pubertal development and suggests molecular links between reproductive maturation and both embryonic development and biological aging across species.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: juser.fz-juelich.de
650 _ 7 |a Aging
|2 Other
650 _ 7 |a DNA-methylation
|2 Other
650 _ 7 |a Epigenetics
|2 Other
650 _ 7 |a Menarche
|2 Other
650 _ 7 |a Puberty
|2 Other
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a DNA Methylation
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Saliva: metabolism
|2 MeSH
650 _ 2 |a Puberty: genetics
|2 MeSH
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Genome-Wide Association Study
|2 MeSH
650 _ 2 |a Epigenesis, Genetic
|2 MeSH
650 _ 2 |a Menarche: genetics
|2 MeSH
650 _ 2 |a Biomarkers
|2 MeSH
700 1 _ |a Smith, Trey
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Goode, Joshua A
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Willems, Yayouk E
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schowe, Alicia M
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Czamara, Darina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mönkediek, Bastian
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pahnke, Charlotte K L
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Forstner, Andreas J
|0 P:(DE-Juel1)186755
|b 8
700 1 _ |a Binder, Elisabeth B
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schneper, Lisa
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Notterman, Daniel A
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Tucker-Drob, Elliot M
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Raffington, Laurel
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Mitchell, Colter
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Harden, K Paige
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
773 _ _ |a 10.1038/s41598-025-19588-1
|g Vol. 15, no. 1, p. 35970
|0 PERI:(DE-600)2615211-3
|n 1
|p 35970
|t Scientific reports
|v 15
|y 2025
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/1049047/files/DeSteiguer_etal_ScientificReports_2025.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1049047
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)186755
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21