001049064 001__ 1049064
001049064 005__ 20260112202637.0
001049064 0247_ $$2doi$$a10.1007/s00103-025-04096-4
001049064 0247_ $$2ISSN$$a0007-5914
001049064 0247_ $$2ISSN$$a1436-9990
001049064 0247_ $$2ISSN$$a1437-1588
001049064 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05157
001049064 037__ $$aFZJ-2025-05157
001049064 082__ $$a610
001049064 1001_ $$0P:(DE-HGF)0$$aKerth, Janna-Lina$$b0$$eCorresponding author
001049064 245__ $$aKünstliche Intelligenz in der Gesundheitsvorsorge von Kindern und Jugendlichen – Anwendungsmöglichkeiten und Akzeptanz - Artificial intelligence in preventive medicine for children and adolescents—applications and acceptance
001049064 260__ $$aHeidelberg$$bSpringer$$c2025
001049064 3367_ $$2DRIVER$$aarticle
001049064 3367_ $$2DataCite$$aOutput Types/Journal article
001049064 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768029256_12105
001049064 3367_ $$2BibTeX$$aARTICLE
001049064 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049064 3367_ $$00$$2EndNote$$aJournal Article
001049064 520__ $$aThe use of artificial intelligence (AI) in pediatric and adolescent medicine offers numerous possibilities, particularly in the prevention of chronic diseases. AI-powered applications such as machine learning for the analysis of speech or movement patterns can, for example, help in the early diagnosis of autism spectrum disorders or motor development delays. In addition, AI-based systems support the treatment of children with type 1 diabetes through automated insulin dosing (AID) systems.AI enables more accurate diagnoses and personalized therapeutic approaches and helps relieve the burden on medical personnel. At the same time, there are challenges associated with the use of AI, which is why only a few applications have so far become part of routine clinical practice. These challenges include the protection of sensitive data and the respect for informational self-determination, ensuring freedom from discrimination, algorithmic transparency, and the acceptance of AI by all involved groups such as children, adolescents, parents, and medical professionals. All stakeholders express concerns about potential misjudgments, the loss of personal interactions, and the possible commercial use of data. Parents and professionals emphasize the importance of clear communication, shared decision-making, and training to promote better understanding. Moreover, there is often a lack of structured, high-quality, large datasets in compatible formats to effectively train AI systems.A sustainable integration of AI in pediatric and adolescent medicine requires large-scale clinical studies, access to high-quality datasets, and a nuanced analysis of the ethical and social implications.
001049064 536__ $$0G:(DE-HGF)POF4-5255$$a5255 - Neuroethics and Ethics of Information (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001049064 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049064 7001_ $$0P:(DE-HGF)0$$aBischops, Anne Christine$$b1
001049064 7001_ $$0P:(DE-HGF)0$$aHagemeister, Maurus$$b2
001049064 7001_ $$0P:(DE-HGF)0$$aReinhart, Lisa$$b3
001049064 7001_ $$0P:(DE-Juel1)174172$$aKonrad, Kerstin$$b4
001049064 7001_ $$0P:(DE-Juel1)166268$$aHeinrichs, Bert$$b5
001049064 7001_ $$0P:(DE-HGF)0$$aMeissner, Thomas$$b6
001049064 773__ $$0PERI:(DE-600)1470303-8$$a10.1007/s00103-025-04096-4$$gVol. 68, no. 8, p. 907 - 914$$n8$$p907 - 914$$tBundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz$$v68$$x0007-5914$$y2025
001049064 8564_ $$uhttps://link.springer.com/article/10.1007/s00103-025-04096-4
001049064 8564_ $$uhttps://juser.fz-juelich.de/record/1049064/files/s00103-025-04096-4.pdf$$yOpenAccess
001049064 909CO $$ooai:juser.fz-juelich.de:1049064$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001049064 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Klinik für Allgemeine Pädiatrie, Neonatologie und Kinderkardiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225, Düsseldorf$$b0
001049064 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174172$$aForschungszentrum Jülich$$b4$$kFZJ
001049064 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166268$$aForschungszentrum Jülich$$b5$$kFZJ
001049064 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5255$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001049064 9141_ $$y2025
001049064 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001049064 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001049064 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001049064 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBUNDESGESUNDHEITSBLA : 2022$$d2024-12-09
001049064 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001049064 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-09$$wger
001049064 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001049064 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001049064 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001049064 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001049064 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001049064 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001049064 980__ $$ajournal
001049064 980__ $$aVDB
001049064 980__ $$aUNRESTRICTED
001049064 980__ $$aI:(DE-Juel1)INM-7-20090406
001049064 9801_ $$aFullTexts