001     1049064
005     20260112202637.0
024 7 _ |a 10.1007/s00103-025-04096-4
|2 doi
024 7 _ |a 0007-5914
|2 ISSN
024 7 _ |a 1436-9990
|2 ISSN
024 7 _ |a 1437-1588
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-05157
|2 datacite_doi
037 _ _ |a FZJ-2025-05157
082 _ _ |a 610
100 1 _ |a Kerth, Janna-Lina
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Künstliche Intelligenz in der Gesundheitsvorsorge von Kindern und Jugendlichen – Anwendungsmöglichkeiten und Akzeptanz - Artificial intelligence in preventive medicine for children and adolescents—applications and acceptance
260 _ _ |a Heidelberg
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768029256_12105
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The use of artificial intelligence (AI) in pediatric and adolescent medicine offers numerous possibilities, particularly in the prevention of chronic diseases. AI-powered applications such as machine learning for the analysis of speech or movement patterns can, for example, help in the early diagnosis of autism spectrum disorders or motor development delays. In addition, AI-based systems support the treatment of children with type 1 diabetes through automated insulin dosing (AID) systems.AI enables more accurate diagnoses and personalized therapeutic approaches and helps relieve the burden on medical personnel. At the same time, there are challenges associated with the use of AI, which is why only a few applications have so far become part of routine clinical practice. These challenges include the protection of sensitive data and the respect for informational self-determination, ensuring freedom from discrimination, algorithmic transparency, and the acceptance of AI by all involved groups such as children, adolescents, parents, and medical professionals. All stakeholders express concerns about potential misjudgments, the loss of personal interactions, and the possible commercial use of data. Parents and professionals emphasize the importance of clear communication, shared decision-making, and training to promote better understanding. Moreover, there is often a lack of structured, high-quality, large datasets in compatible formats to effectively train AI systems.A sustainable integration of AI in pediatric and adolescent medicine requires large-scale clinical studies, access to high-quality datasets, and a nuanced analysis of the ethical and social implications.
536 _ _ |a 5255 - Neuroethics and Ethics of Information (POF4-525)
|0 G:(DE-HGF)POF4-5255
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bischops, Anne Christine
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hagemeister, Maurus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Reinhart, Lisa
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Konrad, Kerstin
|0 P:(DE-Juel1)174172
|b 4
700 1 _ |a Heinrichs, Bert
|0 P:(DE-Juel1)166268
|b 5
700 1 _ |a Meissner, Thomas
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1007/s00103-025-04096-4
|g Vol. 68, no. 8, p. 907 - 914
|0 PERI:(DE-600)1470303-8
|n 8
|p 907 - 914
|t Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz
|v 68
|y 2025
|x 0007-5914
856 4 _ |u https://link.springer.com/article/10.1007/s00103-025-04096-4
856 4 _ |u https://juser.fz-juelich.de/record/1049064/files/s00103-025-04096-4.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1049064
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Klinik für Allgemeine Pädiatrie, Neonatologie und Kinderkardiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225, Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)174172
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166268
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5255
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BUNDESGESUNDHEITSBLA : 2022
|d 2024-12-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21