001049088 001__ 1049088
001049088 005__ 20260108204822.0
001049088 0247_ $$2doi$$a10.1007/s12268-025-2597-3
001049088 0247_ $$2ISSN$$a0947-0867
001049088 0247_ $$2ISSN$$a1868-6249
001049088 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05180
001049088 037__ $$aFZJ-2025-05180
001049088 082__ $$a540
001049088 1001_ $$0P:(DE-Juel1)188440$$aHudina, Esther$$b0$$ufzj
001049088 245__ $$aPlastizität bakterieller ESCRT-III-Strukturen bei der Membranremodellierung
001049088 260__ $$aHeidelberg$$bSpringer Nature$$c2025
001049088 3367_ $$2DRIVER$$aarticle
001049088 3367_ $$2DataCite$$aOutput Types/Journal article
001049088 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767868843_2523
001049088 3367_ $$2BibTeX$$aARTICLE
001049088 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049088 3367_ $$00$$2EndNote$$aJournal Article
001049088 520__ $$aBacterial ESCRT-III proteins protect and maintain the structural integrity of prokaryotic membranes. Cryo-electron microscopy studies of ESCRT-III family members PspA and Vipp1 revealed the structural basis of helical rod, ring and stacked ring assembly formation. Although the basic ESCRT-III fold remained conserved in the observed structures, monomers adopted a remarkable degree of structural plasticity. Minor conformational changes resulted in major shifts in assembly architectures and are important for the ability to remodel membranes.
001049088 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001049088 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001049088 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049088 7001_ $$0P:(DE-Juel1)181012$$aJunglas, Benedikt$$b1$$ufzj
001049088 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b2$$eCorresponding author
001049088 773__ $$0PERI:(DE-600)2203536-9$$a10.1007/s12268-025-2597-3$$gVol. 31, no. 7, p. 723 - 726$$n7$$p723 - 726$$tBiospektrum$$v31$$x0947-0867$$y2025
001049088 8564_ $$uhttps://juser.fz-juelich.de/record/1049088/files/Hudina%2C%20Plastizit%C3%A4t%20bakterieller%20ESCRT-III-Strukturen.pdf$$yOpenAccess
001049088 8767_ $$d2025-12-10$$eHybrid-OA$$jDEAL
001049088 909CO $$ooai:juser.fz-juelich.de:1049088$$popenaire$$popen_access$$pOpenAPC_DEAL$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001049088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188440$$aForschungszentrum Jülich$$b0$$kFZJ
001049088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181012$$aForschungszentrum Jülich$$b1$$kFZJ
001049088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b2$$kFZJ
001049088 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001049088 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001049088 9141_ $$y2025
001049088 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001049088 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001049088 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001049088 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001049088 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001049088 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-17$$wger
001049088 920__ $$lyes
001049088 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001049088 980__ $$ajournal
001049088 980__ $$aVDB
001049088 980__ $$aUNRESTRICTED
001049088 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001049088 980__ $$aAPC
001049088 9801_ $$aAPC
001049088 9801_ $$aFullTexts