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eLife Assessment
This valuable contribution combines high-resolution histology with magnetic resonance imaging in 
a novel way to study the organisation of the human amygdala. The main findings convincingly show 
the axes of microstructural organisation within the amygdala and how they map onto the functional 
organisation. Overall, the approach taken in this paper showcases the utility of combining multiple 
modalities at different spatial scales to help understand brain organisation.

Abstract The amygdala is a subcortical region in the mesiotemporal lobe that plays a key role 
in emotional and sensory functions. Conventional neuroimaging experiments treat this structure as 
a single, uniform entity, but there is ample histological evidence for subregional heterogeneity in 
microstructure and function. The current study characterized subregional structure-function coupling 
in the human amygdala, integrating post-mortem histology and in vivo MRI at ultra-high fields. Core 
to our work was a novel neuroinformatics approach that leveraged multiscale texture analysis as well 
as non-linear dimensionality reduction techniques to identify salient dimensions of microstructural 
variation in a 3D post-mortem histological reconstruction of the human amygdala. We observed two 
axes of subregional variation in this region, describing inferior-superior as well as mediolateral trends 
in microstructural differentiation that in part recapitulated established atlases of amygdala subnuclei. 
Translating our approach to in vivo MRI data acquired at 7 Tesla, we could demonstrate the gener-
alizability of these spatial trends across 10 healthy adults. We then cross-referenced microstructural 
axes with functional blood-oxygen-level dependent (BOLD) signal analysis obtained during task-free 
conditions, and revealed a close association of structural axes with macroscale functional network 
embedding, notably the temporo-limbic, default mode, and sensory-motor networks. Our novel 
multiscale approach consolidates descriptions of amygdala anatomy and function obtained from 
histological and in vivo imaging techniques.

Introduction
The amygdala is a central hub for socio-affective and cognitive functioning (LeDoux, 2003; Adolphs, 
1999; Pessoa and Adolphs, 2010). Over the past decades, lesion studies in animals and humans 
have been crucial in our understanding of this structure’s functional role. Studies performed in animal 
models have reported significant deficits in a vast array of social and affective functions following 
amygdala lesions, including affective blunting, perturbed social interest and affiliation behaviors, 
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increased aggression, altered sexual and maternal behaviors as well as fear response to environmental 
stimuli (Gothard, 2020; Dal Monte et al., 2015; Kazama et al., 2012). In addition to altering social 
behavior, lesions of this structure in humans have been associated with impaired decision-making 
(Hampton et al., 2007) and deficits in attention and arousal mechanisms (Sarter and Bruno, 2000), 
emphasizing the importance of the amygdala in a broad array of functional domains.

Although earlier work on amygdala function in humans has considered this region as a single, 
unitary structure, the distinct roles of its individual subdivisions are now increasingly highlighted (Ball 
et al., 2007; Bzdok et al., 2013; Gamer et al., 2010). Notably, early research on the amygdala in non-
human primates has been instrumental in understanding its intricate structure, function, and patterns 
of anatomical connectivity (Amaral and Price, 1984; Ghashghaei et  al., 2007). This foundational 
work has highlighted the amygdala’s different subdivisions, most notably the basomedial nucleus 
(BM), basolateral nucleus (BL), and central nucleus (Ce) (Amaral et al., 1992). Furthermore, this work 
describes a dense network between these subdivisions and the prefrontal cortex, most strongly found 
in the posterior orbitofrontal and anterior cingulate areas.

In humans, qualitative examinations of post-mortem specimens have identified several subdivi-
sions within the amygdala, each with distinct cytoarchitectural characteristics and distinguishable 
connectivity profiles (Kedo et al., 2018). These individual subnuclei have often been grouped into 
larger subdivisions, specifically centromedian, laterobasal, and superficial regions (Amunts et al., 
2005). Distinguishable connectivity profiles in these subdivisions have been previously observed 
through the analysis of resting-state functional magnetic resonance imaging (rsfMRI) (Ghashghaei 
et al., 2007; Caparelli et al., 2017). This non-invasive technique has been instrumental in interro-
gating gray matter (GM) connectivity and mapping functional networks in the brain by detecting 
coordinated hemodynamic signal fluctuations across regions (Greicius et  al., 2009; Yeo et  al., 
2011; Biswal et al., 1995; Smith et al., 2009; Biswal et al., 2010; Raichle, 2011). For instance, 
previous work has shown synchronized functional signals between the centromedial (CM) subdi-
vision of the amygdala and middle and anterior cingulate cortices, frontal cortex, striatum, insula, 
cerebellum, and precuneus, supporting processes such as attention control and visceral responses 
(Pessoa, 2010; Barbour et al., 2010; Kapp et al., 1994). Conversely, the laterobasal (LB) region 
shows unique connectivity with the inferior and middle temporal gyri and middle occipital gyrus 
which have been associated with associative processing of environmental information and the inte-
gration with self-relevant cognition for decision making (Pessoa, 2010; Winstanley et al., 2004; 
Ghods-Sharifi et  al., 2009; Boyer, 2008). The superficial (SF) subdivision of the amygdala has 
rather been associated with social information processing and social interaction via its unique 
connectivity to the paracentral lobule, posterior cingulate cortex, and orbitofrontal cortex (Capar-
elli et al., 2017; Goossens et al., 2009; Hurlemann et al., 2009; Carr et al., 2003; Wicker et al., 
2003). Given these differences across amygdala subregions, combining structural and functional 
analyses can shed light on the multi-faceted contribution of the amygdala to affective and cogni-
tive functioning by potentially revealing variable participation of its subdivisions in different func-
tional networks.

Our current understanding of the amygdala highlights its multidimensional roles, supported by 
its complex anatomy and participation in multiple brain networks. However, microstructural atlases 
of this area developed using quantitative techniques are still lacking but are essential for large-scale 
investigations of structure-function coupling within this region. Emerging strategies for quantitative 
segmentations of amygdala subdivisions have shown promising results. For example, a dual-branch 
convolutional network model trained with features extracted from T1-weighted images could find a 
strong overlap between automatically segmented labels and a manual segmentation of lateral, basal, 
cortico-superficial and centromedial subregions (Liu et al., 2020). Similarly, a machine learning-based 
correction model could achieve comparable accuracy using a multi-atlas segmentation model (Hanson 
et al., 2012). Despite the promise of these methods, they remain to be validated in histology (Amunts 
and Zilles, 2015), which remains a key technique to validate MRI-based features with access to ground-
truth measures of cytoarchitecture (Yang et al., 2013; Alkemade et al., 2023; Amunts et al., 2020). 
Indeed, regions with different cytoarchitectures often show distinct myelination patterns, which can 
be observed through various MRI contrasts. Such myelin-sensitive imaging contrasts can differentiate 
regions with distinct intracortical myeloarchitectonic profiles, demonstrating ties between variations 
in cellular architecture and myelin distribution (Ganzetti et al., 2014; Baxi et al., 2022).

https://doi.org/10.7554/eLife.101950
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Our study seeks to elucidate the intricate structure-function relationships within the amygdala by 
leveraging advanced data-driven quantitative methods and high-resolution histology. Our approach 
first leveraged computer vision techniques to map major subdivisions of the amygdala in BigBrain 
(Amunts et  al., 2013), a post-mortem, high-resolution 3D histological dataset providing direct 
measurements of brain cytoarchitecture. We translated this approach to in vivo MRI data acquired at 
ultra-high fields enabling individual-specific assessments of microstructure-function coupling in the 
amygdala. Harnessing myelin-sensitive contrasts and multi-echo rsfMRI, our study identifies a principal 
axis of microstructural and functional network dissociation within the human amygdala from a data-
driven analysis of its cyto- and myeloarchitecture.

Results
Data-driven histological analysis of the human amygdala
Using a radiomics approach (Schleicher et  al., 1999; Palomero-Gallagher and Zilles, 2018), we 
computed the four central moments (mean, variance, skewness, and kurtosis) from cell body staining 
intensities in the amygdala provided by the BigBrain dataset (Amunts et al., 2013; Xiao et al., 2019; 
Paquola et al., 2021; Figure 1A). These voxel-wise metrics were computed across different kernel 
sizes, with local three-dimensional neighborhoods ranging from a radius of 2–10 voxels. As expected, 
increasing kernel values produced smoother images for all central moments. Thus fine-grain features 
were emphasized at small kernel values and coarser features with larger kernel values.

The resulting feature bank showed heterogeneous feature profiles across selected moments and 
kernel sizes (Figure 1B). Mean intensities smoothly increased in the ventral to dorsal direction, culmi-
nating in the highest intensity values in the dorsal subnucleus regions, and mainly coinciding with 
the CM subdivision of the amygdala. Variance, however, was highest along the amygdala’s borders 
with the entorhinal cortex and in the amygdala-striatum transition zone. Skewness and kurtosis maps 
generally co-varied spatially and both highlighted high skewness and kurtosis within the lateral 
nucleus. Together, these findings indicate that the selected features captured both unique and shared 
characteristics of histological signal variations within the amygdala.

We then applied Uniform Manifold Approximation and Projection (UMAP), a non-linear dimen-
sionality reduction technique that preserves the local and global structure of high-dimensional data 
(Figure  1C) by projecting it into a lower-dimensional space (Becht et  al., 2018) to derive a two-
dimensional embedding of amygdala cytoarchitecture (Figure 1D). This approach allowed us to bring 
the high-dimensional histological feature space to a 2D embedding space composed of every amyg-
dala voxel. As such, amygdala voxels were ordered along two dimensions, U1 and U2, capturing two 
axes of variance in amygdala cytoarchitecture. To better visualize which features may be driving each 
UMAP dimension, we sorted all input features along U1 and U2 (Figure 1E). Ordering the mean along 
U1 highlighted increasing intensity values at all different kernel sizes, where the highest intensity 
voxels co-localized with low values in U1. While the variance, skewness, and kurtosis showed less 
systematic changes at lower kernel values, patterns became more evident at higher kernels. Indeed, 
variance and kurtosis seemed to show an opposite trend to the mean along U1, where higher skew-
ness and kurtosis co-localized more strongly with positive values of U1 (Supplementary file 1a). In 
contrast, sorting the feature matrix by U2 showed very similar trends between all features, indepen-
dent of its moment and kernel value. More specifically, the highest intensity voxels were mostly found 
to show higher values along U2 (Supplementary file 1b). Overall, these UMAP-driven visualizations of 
the histological feature space suggest our dimensionality reduction approach could recover moment-
specific (U1) as well as global intensity covariations across moments (U2).

To contextualize variations in U1 and U2 values across the amygdala, we computed voxel-wise 
correlations between each UMAP component and the amygdala coordinate space. U1 primarily varied 
along the inferior-superior axis (U1: r=0.8340; U2: r=–0.0137), followed by posterior-anterior (U1: 
r=–0.5282; U2: r=0.2793) and medial-lateral directions (U1: r=0.1399; U2: r=–0.2657) (Figure 1G). 
Statistical significance of correlations was assessed using a variogram matching approach (Burt et al., 
2020) implemented in the BrainSpace toolbox (Vos de Wael et al., 2020; Figure 1G). Both UMAP 
components were found to significantly co-vary along the posterior-anterior axis (U1: pnull < 0.001; U2: 
pnull = 0.002), while only U1 was significantly correlated with the inferior-superior axis (U1: pnull < 0.001; 

https://doi.org/10.7554/eLife.101950
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Figure 1. Data-driven histological mapping of the human amygdala. (A) The amygdala was segmented from the 100 micron resolution BigBrain 
dataset using an existing subcortical parcellation (Xiao et al., 2019). Slice orientation of subpanels containing amygdala images is consistent across all 
panels in this figure. (B) Leveraging the pyRadiomics package v3.0.1 (van Griethuysen et al., 2017), we built a multiscale histological feature bank of 
the amygdala capturing fine-to-coarse intensity variations within this structure. Feature values were all normalized to better visualize relative intensity 

Figure 1 continued on next page
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U2: pnull = 0.909). Neither U1 nor U2 were significantly correlated with the medial-lateral coordinate 
(U1: pnull = 0.441; U2: pnull = 0.068).

Validation of histological space using independent post-mortem 
dataset
We contextualize our data-driven approach using established probability maps of amygdala micro-
structure. These openly available probability maps generated from visual inspection of 10 post-
mortem brains divide the amygdala into CM, SF, and LB subregions (Amunts et al., 2020). Maps 
were thresholded to retain only voxels with the highest 5% probability values and binarized. Plotting 
the probability values of retained voxels for each subregion showed that UMAP could dissociate 
these established cytoarchitectural subdivisions of the amygdala (Figure 1H). The three subregions 
could be particularly segregated along the U1 component. Indeed, we found significant differences 
in U1 values across the three amygdala subdivisions (F=1630.8; pnull  <0.001), while no significant 
difference was found across U2 (F=30.3; pnull <0.581) (Figure 1I). Together, these findings show our 
theoretically grounded framework can successfully distinguish different subregions in the amygdala 
in a purely data-driven way. Additionally, results could be replicated when analyzing signals from 
the right amygdala, supporting the potential generalizability of our framework (Figure 1—figure 
supplement 1).

In vivo generalizability of histological space
We also assess the generalizability of these results to in vivo myelin-sensitive MRI data. We leverage 
quantitative T1 imaging collected at a field strength of 7 Tesla (7T) in 10 unrelated, healthy partici-
pants (Figure 2A). These images offered a resolution of 500 μm and were run through a similar analyt-
ical framework as the BigBrain dataset. We used individual-specific segmentations of the amygdala 
obtained with VolBrain (Manjón and Coupé, 2016). Once again, a feature bank was rendered from 
the same central moments, specifically mean, variance, skewness, and kurtosis. Kernel sizes varied 
from size 1–5, resulting in 20 distinct feature maps (Figure 2A). The new feature bank was again 
submitted to UMAP for dimensionality reduction (Figure 2A), and the values of each component were 
plotted back to their respective coordinates in the amygdala.

We then compared spatial variations of the two UMAP components uncovered in each participant 
with the UMAP space derived from the BigBrain dataset. When examining the spatial layout of the 
UMAP components, we find similar neuroanatomical trends in all subjects to those found in histology 
(Figure  2B). Notably, the U1 vector of all subjects are found to be significantly correlated to the 
inferior-superior axis from a variogram matching test (Supplementary file 1c), similar to BigBrain, 
suggesting the potential for this framework to capture important structural features in histology as 
well as in vivo MRI. We also find that the medial-lateral axis correlations to U1 across all subjects are 
consistent with the variogram test (Supplementary file 1c). The spatial layout of U2, on the other 
hand, showed lower consistency across participants, as none of the coordinate axes were signifi-
cantly correlated with U2 in more than 7/10 subjects (Supplementary file 1d). In sum, we identify a 
single axis (U1) able to pick up on important amygdala microstructural features in both post-mortem 
histology and in vivo markers of GM microstructure.

differences. (C) Matrix representation of the normalized feature bank shown in A. (D) We applied Uniform Manifold Approximation and Projection 
(UMAP) to this feature bank to derive a low-dimensional embedding of amygdala cytoarchitecture, defining a two-dimensional coordinate space (scatter 
plot, middle). Colors of the scatter plot represent proximity to axis limits. (E) Reordering the feature bank according to each eigenvector (U1 and 
U2) highlights the underlying variance in each feature captured by UMAP. (F) Coloring each amygdala voxel according to its corresponding location 
in the UMAP embedding space partially recovered its anatomical organization. (G) U1 and U2 were correlated to the three spatial axes and variogram 
matching tests assessed the statistical significance of each correlation (statistical significance threshold set at p<0.05). (H) Coloring the embedding 
space with openly available probabilistic map labels of the three main amygdala subregions showed that this region’s microstructural architecture could 
be recovered by UMAP. (I) Ridge plots of the probability values per subregion also illustrate a characterization of the subregions in U1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Replication of data-driven histological mapping for the right amygdala.

Figure 1 continued

https://doi.org/10.7554/eLife.101950
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Association with macroscale function
We next sought to investigate associations between amygdala microstructural organization and this 
region’s macroscale functional organization across subjects. Given U1’s strong spatial consistency 
across participants and microstructural modalities, we generated subject-specific masks segre-
gating this component’s highest and lowest 25% of values within the amygdala for each participant. 
This resulted in two distinct regions of interest, reflecting the anchors of maximal microstructural 

Figure 2. Translating amygdala histological space to in vivo, ultra-high-resolution, myelin-sensitive magnetic resonance imaging (MRI). (A) We 
segmented the left and right amygdalae of individual subjects from quantitative T1 (qT1) scans, and applied the same framework as developed in post-
mortem imaging to derive subject-specific, in vivo representations of amygdala microstructure. (B) Correlation values between the Uniform Manifold 
Approximation and Projection (UMAP) components (U1 and U2) and the three coordinate axes of the 10 MRI subjects were computed in MNI152 space 
and then contrasted with the correlation values found in the histological data (BigBrain transformed to MNI152 space).

https://doi.org/10.7554/eLife.101950
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dissociation within the amygdala for each participant, from which we could extract corresponding 
functional activity recorded at rest (Figure 3A).

Voxel-wise rsfMRI time series were averaged within each microstructural subregion and correlated 
to vertex-wise cortical time series. A linear mixed effect model comparing amygdalo-cortical connec-
tivity profiles between both subregions showed that functional network affiliations significantly 
differed across U1 subregions, with stronger connectivity observed between the superior portions 
of the amygdala (top 25%  U1 values) and the prefrontal lobe (Figure  3B). Stratifying functional 
connectivity patterns of each amygdala subregion to the cortex according to established intrinsic 
functional network communities further highlighted the relatively stronger connectivity of the superior 
subregions to all cortical networks, particularly the limbic, frontoparietal, and default mode networks 
(Figure 3C). Meta-analytical decoding of subregional connectivity profiles using NeuroSynth (Yarkoni 
et al., 2011) emphasized the functional dissociation in connectivity patterns of both microstructurally-
defined areas. This analysis showed that the functional connectivity pattern of the region with the 
highest 25% U1 values was most strongly associated with terms relating to autobiographical memory 
(‘autobiographical’ and ‘autobiographical memory’), while the other seed region’s connectivity profile 
overlapped with activation patterns related to emotional input (‘happy faces,’ ‘neutral faces,’ and 
‘fearful faces’) (Figure  3C). Furthermore, decoding our statistical effects map (Region 1 connec-
tivity >Region 2 connectivity) highlighted associations with terms relating to the self, introspection, 
and reward (‘self-referential,’ ’referential,’ ‘moral,’ ‘autobiographical,’ ‘smoking,’ ‘craving’). Collec-
tively, these findings show that our theoretically grounded approach, developed in histology and 
generalizable to microstructurally-sensitive in vivo MRI data, can delineate distinct functional network 
embeddings in the human amygdala.

Discussion
The amygdala is a crucial structure for several aspects of cognitive and socio-affective functioning 
(Pessoa and Adolphs, 2010). These functions are supported by complex connectivity patterns to 
other brain regions, stemming from distinct subnuclei with unique microstructural properties (Kedo 
et  al., 2018). However, current investigations of structure-function coupling in the amygdala are 
limited by a lack of datasets and tools for individualized and observer-independent delineation of its 
subregions. Indeed, the strong inter-individual variability of its structural and functional organization 
(Amunts et al., 2005; Sylvester et al., 2020) motivates more personalized approaches to reliably 
study the microstructural determinants of amygdala function and connectivity. In the current paper, 
we present a data-driven exploration of subcortical cytoarchitecture applied to the human amygdala. 
We could translate this approach to microstructurally-sensitive in vivo MRI data as a bridge, to ulti-
mately examine associations between microstructural subregions and functional networks. As such, 
the present work defines a quantitative and integrated account of the amygdala’s microstructural 
composition and functional organization. In doing so, our approach sets the stage for novel investi-
gations spanning other subcortico-cortical systems, and shows potential to deliver new insights into 
brain-wide principles of structure-function coupling and how this interplay may be altered in clinical 
populations.

The proposed framework aimed to delineate amygdala subnuclear organization by leveraging a 
multiscale texture processing pipeline designed to retain finer and coarser regional cytoarchitectonic 
properties. We specifically harness radiomics, a field with established diagnostic and prognostic poten-
tial in medical imaging (Limkin et al., 2017). Feature selection in our study was motivated by previous 
work conducted at the level of the neocortex (Amunts and Zilles, 2015; Schleicher et al., 1999) 
and focused on the four central moments, specifically, the mean, variance, skewness, and kurtosis of 
voxel subsets, to reflect regional texture variability related to amygdala cytoarchitecture. In contrast 
to qualitative approaches based on single features, such as investigations based on the detection 
of specific cell types (Bonin, 1961), our pipeline captures several aspects of amygdala microstruc-
ture informing non-linear dimensionality reduction methods applied to a high-dimensional feature 
space. The resulting components U1 and U2 reflected complex combinations of central moments, 
with U1 being mainly scaled to mean intensities and U2 being associated with weighted combina-
tions of the different moments. Crucially, we validated this coordinate space using openly available 
maps of amygdalar subdivisions from histological examinations performed by expert neuroanatomists 
(Amunts et al., 2020). This approach complements previous work harnessing subnuclear parcellations 

https://doi.org/10.7554/eLife.101950


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Auer et al. eLife 2024;13:RP101950. DOI: https://doi.org/10.7554/eLife.101950 � 8 of 20

Figure 3. Functional network mapping of amygdala microstructural subregions. (A) We isolated the resting-state functional magnetic resonance 
imaging (rsfMRI) time series of two amygdala subregions, defined from subject-specific U1 topography, as well as the whole amygdala. (B) We 
computed the functional connectivity of both amygdala subregions, and project resulting correlations to the cortex. We further demonstrate the 
differences in connectivity patterns between both subregions (t-value) and highlight the regions with significant differences (pFWE<0.05). (C) Left: 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.101950
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of the amygdala derived from visual inspections of post-mortem specimens (Kedo et al., 2018) and 
deep-learning algorithms applied to in vivo MRI data (Liu et al., 2020; Liu et al., 2019; Saygin et al., 
2017) to contextualize variations in functional connectivity profiles within this region. Indeed, a signif-
icant advantage of our framework lies in the ease with which it may be applied to new datasets. For 
instance, our method overcomes the time-consuming nature and high level of expertise required for 
precise manual subnuclear segmentations. Furthermore, this approach circumvents the need for large 
datasets required to validate deep learning-based applications, a particular concern in the case of 
histological data which are often limited to few or even single specimens. However, it is important to 
note that both datasets analyzed in this work are limited by their small sample size (n=1 for BigBrain 
and n=10 for MICA-PNI). We speculate that the signal variations captured by U2 may be sensitive 
to artifacts or subject-specific sources of variance, potentially explaining why it was not consistent 
between subjects and modalities. Moving forward, this hypothesis could be assessed in future work 
via the analysis of larger histological and neuroimaging datasets to better track recurring features 
picked up by U2 or the association of these unique topographies with behavioral markers. Overall, the 
proposed framework lays the groundwork for future investigations of subcortical structure-function 
coupling by anchoring connectivity and task-related activations within measurements of regional 
microarchitecture.

The present works described a continuous coordinate space of amygdala subregional microstruc-
ture. However, this region has been previously described as consisting of three main subdivisions: LB, 
CM, and SF, each composed of smaller subnuclei with distinct connectivity patterns and functions (Ball 
et al., 2007; Bzdok et al., 2013; Amunts et al., 2005; de Olmos and Heimer, 1999). These subre-
gions are largely conserved between humans and monkeys, reflecting their evolutionary relationship. 
However, there are still some considerable differences such as in the SF subregion, where its descrip-
tion in monkeys additionally contains the lateral olfactory tract (LOT) (Olmos, 1990). Although qualita-
tive histological accounts have indeed delineated multiple subunits within these general regions, the 
present work focuses on three subdivisions (Amunts et al., 2005). To account for resolution disparities 
when translating our findings to in vivo MRI data. The LB subdivision includes the basomedial nucleus 
(Bm), basolateral nucleus (BL), lateral nucleus (LA), and paralaminar nucleus (PL). Moving medially, the 
CM subdivision includes the central (Ce) and medial nuclei (Me), while the SF subdivision includes the 
anterior amygdaloid area (AAA), amygdalohippocampal transition area (AHi), amygdalopiriform tran-
sition area (APir), and ventral cortical nucleus (VCo) (Heimer et al., 1999). However, disagreement on 
the precise attribution of nuclei to broader subdivisions motivated our investigations of probabilistic 
subunits of the amygdala (Kedo et  al., 2018). The development of new tools to segment amyg-
dala subnuclei in vivo opens opportunities for future work to further validate our framework at the 
precision of these nuclei within subjects (Saygin et al., 2017). We selected UMAP for its potential to 
recover this nuclear architecture via the identification of discrete clusters of microstructural similarity 
within the amygdala. While these dimensions partially align with traditional concepts of arealization, 
they also provide a complementary, graded representation of amygdala microarchitecture. Although 
our framework leverages ultra-high resolution histological and myelin-sensitive MRI, the inherent 
spatial autocorrelation of feature intensities in these modalities may have emphasized the continuous 
signal variations we identify within the amygdala and hindered the discovery of discrete boundaries 
between known subdivisions. We address this limitation by benchmarking U1 and U2 distributions 
against validated probabilistic maps of major amygdala subdivisions (Amunts et al., 2005; Amunts 
et al., 2020), enabling us to recover the established biological validity of its nuclear organization. 
Furthermore, this approach allowed us to derive discrete clusters of maximal microstructural differ-
entiation within the amygdala; these clusters served as seed regions for microstructurally-grounded 
and individualized investigations of the functional connectome embedding of amygdala subregions. 
Following an inferior-superior and medial-lateral axis of differentiation in both post-mortem histology 

The activation patterns illustrated in (B, top) were averaged within intrinsic functional communities defined by Yeo et al., 2011. Right: Meta-analytic 
decoding of functional connectivity patterns of both amygdala subregions and the whole amygdala dissociated cognitive and affective functional 
affiliations of this region.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Functional network mapping of amygdala microstructural subregions.

Figure 3 continued

https://doi.org/10.7554/eLife.101950
https://paperpile.com/c/TOcsAt/OCXd+MKoa+qcl1+5wvh
https://paperpile.com/c/TOcsAt/HwlR
https://paperpile.com/c/TOcsAt/htLH
https://paperpile.com/c/TOcsAt/LXBt
https://paperpile.com/c/TOcsAt/QVE5
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and myelin-sensitive in vivo MRI, this bipartite division is in line with previous work investigating the 
structural connectivity of the amygdala using diffusion-weighted imaging and probabilistic tractog-
raphy (Bach et al., 2011) as well as functional connectivity from rsfMRI (Mishra et al., 2014). Indeed, 
both modalities highlight the existence of two distinct clusters segregating amygdala connectivity to 
temporopolar and orbitofrontal cortices. These findings mirror macroscale associations seen in the 
neocortex between microstructure and connectivity, which emphasize close correspondence between 
the strength of interareal connectivity and microstructural similarity (Barbas, 2015; García-Cabezas 
et al., 2019; Barbas, 1986). In the case of the amygdala, our framework could thus recover these 
distinct anatomical pathways from a data-driven, texture-based analysis of microarchitectural informa-
tion alone, supporting the potential of such contrasts to provide insights into the large-scale network 
embeddings of subcortical systems.

In line with this suggested association between amygdala microarchitecture and functional connec-
tivity, we conclude our analyses by leveraging subject-specific representations of amygdala micro-
structure to map large-scale variations in its functional connectivity to the neocortex. We isolated and 
contrasted the highest and lowest 25% of U1 values for each participant to define an individualized 
bipartite parcellation of the amygdala. Qualitatively, we found that the subregion defined by the 
highest 25% of U1 values mainly overlapped with what is commonly defined as the superficial and 
centromedial subregions, whereas the lowest 25% U1 values subregion overlapped mostly with the 
laterobasal division. Interestingly, CM and SF-characterized subregions showed significantly stronger 
functional connectivity to prefrontal structures. This finding aligns with previous work demonstrating 
unique affiliations between the CM subregion and anterior cingulate and frontal cortices (Barbour 
et al., 2010; Kapp et al., 1994), as well as between the SF subregion and the orbitofrontal cortex 
(Caparelli et al., 2017; Pessoa, 2010; Goossens et al., 2009; Klein-Flügge et al., 2022). Although 
these findings are promising, we also observe considerable overlap between functional connec-
tivity networks of both our defined subregions. Indeed, the amygdala is a relatively small structure, 
leading to likely interconnectivity between its subregions and locally high signal autocorrelation. Func-
tional connectivity and microstructure in the amygdala are certainly related, however, previous work 
suggests they do not perfectly overlap (Bzdok et al., 2013). In addition, this region is affected by a 
relatively low signal-to-noise ratio (SNR), as is observed in broader temporobasal and mesiotemporal 
territories. Decoding of subregional functional connectivity results indicated possible dissociations 
in cognitive (e.g. memory) and affective (e.g. emotional face processing) functions of the amygdala, 
echoing previous accounts of this region’s functional specialization and subregional segregation of 
associative processing of emotional stimuli. Notably, these findings link the functional connectivity 
profile of a subregion partially co-localizing with LB to emotional face processing. The LB subregion 
has been previously linked to associative processing related to the integration of sensory information 
(Bzdok et  al., 2013; Pessoa, 2010; Winstanley et  al., 2004; Ghods-Sharifi et  al., 2009; Boyer, 
2008), which is consistent with the association with visual-emotional information processing iden-
tified in the present work. For the right amygdala, dissociation in functional connectivity patterns 
were more subtle, leading to overall similar functional decoding across the two clusters (Figure 3—
figure supplement 1). Overall, our findings suggest that this microstructurally-grounded delineation 
of U1 subregions could capture dissociations in their respective functional associations and poten-
tially with fear-related processes. These results echo previous chemoarchitectural descriptions of the 
amygdala involving the 5-HT receptor, which has been closely associated with fear responses in mice 
and humans (Hurlemann et al., 2009; Ramboz et al., 1998). Indeed, this receptor is expressed in 
lower densities in the CM region, overlapping with our U1 subregions that show lower connectivity to 
regions involved in fear-related responses. The present work thus offers an important step towards a 
more integrated account of the amygdala’s microstructural composition and functional organization.

By harnessing an openly available arsenal of tools and methods from histology, radiomics, and 
neuroinformatics, we define a comprehensive framework that enhances our understanding of indi-
vidual differences in amygdala organization. Our findings contribute to a growing body of research 
emphasizing the importance of integrating precise structural and functional in vivo measures to 
elucidate the complex roles of the both subcortical and cortical regions, in both health and disease 
(Paquola et al., 2022; Paquola et al., 2025; Royer et al., 2023; DeKraker et al., 2024). This multi-
modal, multiscale, and subject-specific approach not only advances our knowledge of the amygda-
la’s microstructural and functional intricacies but also offers a valuable resource for future studies 

https://doi.org/10.7554/eLife.101950
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exploring subcortical structures and their implications in various neurological and psychiatric condi-
tions. This integrated perspective is essential for developing more precise and personalized interven-
tions for disorders associated with amygdala dysfunction.

Methods
Histological data acquisition and pre-processing
Cell-body-staining intensity of the amygdala was obtained from the BigBrain dataset (Amunts et al., 
2013). BigBrain is an ultra-high–resolution Merker-stained 3D volumetric histological reconstruc-
tion of a post-mortem human brain from a 65-year-old male, made available on the open-access 
BigBrain repository (​bigbrain.​loris.​ca). This data was acquired through the body donor program of the 
University of Düsseldorf in accordance with legal requirements. The post-mortem brain was paraffin-
embedded, coronally sliced into 7400 20 μm sections, silver-stained for cell bodies (Ball et al., 2007), 
and digitized. As such, image intensity values in this dataset provide direct measurements of brain 
cytoarchitecture. Following manual inspection for artifacts, automatic repair procedures were applied, 
involving nonlinear alignment to a post-mortem MRI, intensity normalization, and block averaging 
(Paquola et al., 2019). 3D reconstruction was implemented with a successive coarse-to-fine hierar-
chical procedure. All main analyses were performed using the 100 μm isovoxel resolution dataset.

Amygdala segmentation and subdivision mapping
The left and right amygdalae were isolated from the BigBrain volume using an existing manual segmen-
tation of left and right subcortical structures (Xiao et al., 2019). This segmentation was warped to 
BigBrain histological space from the standard ICBM2009b symmetric template space (Fonov et al., 
2011) using openly available co-registration strategies aggregated in the BigBrainWarp toolbox (Xiao 
et al., 2019; Paquola et al., 2021). Notably, these approaches were optimized to improve the align-
ment of subcortical structures (Xiao et al., 2019). After registering the subcortical atlas to histological 
space and resampling the segmentation to an isovoxel resolution of 100 μm, we generated unique 
binary masks isolating the left and right amygdalae and performed manual corrections on each mask 
(i.e. improving smoothness and continuity of the mask borders), and eroded the mask by five voxels 
to provide a conservative estimate of regional borders. All main analyses were performed on left 
hemisphere data only, while the right hemisphere served as a validation dataset (Figure 1—figure 
supplement 1).

To contextualize our data-driven histological mapping of the amygdala (see below), we leveraged 
openly available probabilistic maps of amygdala subnuclei derived from visual inspections of post-
mortem tissue specimens performed by expert neuroanatomists (Kedo et al., 2018; Amunts et al., 
2020). The borders of amygdala subdivisions were traced in 10 post-mortem brains. Following 3D 
reconstruction and alignment of each post-mortem brain to a common template space, voxel-wise 
probabilistic maps for each subregion were computed by quantifying the consistency of label assign-
ments across the 10 donor brains. For the present work, all available probabilistic maps of the amyg-
dala, including large subdivision groups encompassing multiple amygdala subnuclei (i.e. CM, LB, and 
SF subdivisions) were accessed from the EBrains repository (v8.2) (Amunts et al., 2020). Regional 
probabilistic maps were warped from ICBM2009c asymmetric space to the ICBM2009b symmetric 
template using the SyN algorithm implemented in the Advanced Normalization Tools software (ANTs) 
(Avants et al., 2008). Each subregional probabilistic map was subsequently warped to BigBrain histo-
logical space (Xiao et al., 2019; Paquola et al., 2021) and was resampled to an isovoxel resolution of 
100 μm. We then generated a maximum probability map to parcellate the amygdala into its subdivi-
sions by retaining the voxels with the highest 5% probability values of belonging to each subdivision.

Histological feature extraction
We built a histological feature bank of amygdala cell-body-staining intensities using methods from 
the field of radiomics (Zhou et al., 2018). Our approach for feature selection was also inspired by 
quantitative cytoarchitectural analyses developed in foundational neuroanatomical studies (Schle-
icher et al., 1999), involving the parameterization of intensity profiles with four central moments 
to characterize regional cytoarchitecture across the neocortex. In the present work, we computed 
these same four central moments (i.e. mean, variance, skewness, and kurtosis) of cell body staining 

https://doi.org/10.7554/eLife.101950
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intensities in the amygdala to characterize intensity differences across this region. We used pyRa-
diomics v3.0.1 (van Griethuysen et  al., 2017) to compute voxel-based maps for each of the 
selected first-order features, varying the size of 3D-feature extraction to a voxel neighbourhood of 
500 μm to 2100 μm (in 400 μm increments). Outlier values (>1 standard deviation from the mean 
intensity value) were excluded from moment calculations at each kernel size. This resulted in 20 
distinct feature maps, capturing variations in intensity distributions within the amygdala at finer 
and coarser scales. These feature maps were normalized by z-scoring each feature at each kernel 
size.

Dimensionality reduction of histological features
To capture and visualize the underlying structure of amygdala cytoarchitecture, we applied UMAP 
to our normalized histological feature bank (Becht et al., 2018). This algorithm was selected over 
other compression approaches for its scalability in the analysis of large datasets, as well as its ability 
to preserve both local and global data structures (Kobak and Linderman, 2021). Two UMAP hyper-
parameters controlling the size of the local neighbourhood as well as the local density of data points 
were kept at their default settings (nneighbours = 15, distmin = 0.1). The resulting low-dimensional embed-
ding of higher-order histological features was contextualized in relation to the amygdala’s x, y, and z 
voxel coordinate space, and validated against the previously described maximum probability map of 
the amygdala.

In vivo MRI data acquisition
After establishing this framework with post-mortem histological data, we assessed its generalizability 
to in vivo, myelin-sensitive MRI contrasts. We capitalized on quantitative T1 (qT1) relaxometry data 
collected from 10 participants at a field strength of 7 Tesla. This sequence has been shown to be sensi-
tive to cortical myeloarchitecture (Lutti et al., 2014; Stüber et al., 2014; Waehnert et al., 2016), and 
could thus offer complementary insights into the microstructural organization of the amygdala. Our 
cohort of 10 adult participants (5 men, mean ± SD age=27.3 ± 5.71 years) were all healthy, with no 
history of neurological or psychiatric conditions (Cabalo et al., 2024). MRI data acquisition protocols 
were approved by the Research Ethics Board of McGill University. All participants provided written 
informed consent, which included a provision for openly sharing all data in anonymized form.

Scans were acquired at the McConnell Brain Imaging Centre (BIC) of the Montreal Neurological 
Institute and Hospital on a 7T Terra Siemens Magnetom scanner equipped with a 32-receive and 
8-transmit channel head coil. Synthetic T1-weighted (UNI) and quantitative T1 relaxometry (qT1) data 
were acquired using a 3D-MP2RAGE sequence (0.5 mm isovoxels, 320 sagittal slices, TR=5170 ms, 
TE=2.44 ms, TI1=1000 ms, TI2=3200 ms, flip angle1=4°, iPAT=3, partial Fourier=6/8 flip angle2=4°, 
FOV = 260 × 260 mm2). We combined two inversion images to minimize sensitivity to B1 inhomoge-
neities and optimize reliability (Haast et al., 2016; Marques et al., 2010). rsfMRI scans were acquired 
using a multi-echo, 2D echo-planar imaging sequence (1.9  mm isovoxels, 75 slices oriented to 
AT-PC-31 degrees, TR=1690 ms, TE1=10.8 ms, TE2=27.3 ms, TE3=43.8 ms, flip angle=67°, multiband 
factor=3). The rsfMRI scan lasted ~6 min, and participants were instructed to fixate a cross displayed 
in the center of the screen, to clear their mind, and not fall asleep.

Multimodal MRI processing and analysis
Anatomical segmentation and co-registration
Image processing leading to the extraction of cortical and subcortical features and their registration to 
surface templates was performed via micapipe v0.2.3, an open multimodal MRI processing and data 
fusion pipeline (https://github.com/MICA-MNI/micapipe/ copy archived at Rodríguez-Cruces and 
Royer, 2025; Cruces et al., 2022). The amygdala was automatically segmented on the T1w images 
with volBrain v3, in every subject (Manjón and Coupé, 2016). Cortical surface models were generated 
from MP2RAGE-derived UNI images using FastSurfer 2.0.0 (Henschel et al., 2020; Henschel et al., 
2022). Surface extractions were inspected and corrected for segmentation errors via the placement 
of manual edits. Native-surface space cortical features were registered to the fs-LR template surface 
using workbench tools (Van Essen et al., 2012).

https://doi.org/10.7554/eLife.101950
https://github.com/MICA-MNI/micapipe/
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qT1 image processing and analysis
Automated, individual-specific segmentations of the amygdala were obtained with VolBrain, and were 
manually inspected and corrected prior to image processing. In a similar fashion to the histological 
data, a feature bank was rendered from the same central moments, although kernel sizes varied from 
size 1–5, rather than 2–10 in order to take into account the difference in image resolution between the 
two datasets. Thus, voxel neighborhoods ranged from 1500 μm to 5500 μm (in 1000 μm increments). 
This resulted in 20 distinct feature maps, capturing variations in intensity distributions within the 
amygdala at finer and coarser scales. The new feature bank was again submitted to UMAP for dimen-
sionality reduction, independently for all 10 participants. This procedure generated a two-dimensional 
feature space unique to each participant recapitulating the organization of the amygdala. We then 
plotted the values generated by UMAP onto their original coordinate points inside the amygdala in 
the native qT1 space of each subject for further visualization and analysis.

To finally compare subject-specific in vivo MRI findings to our previously defined histological 
components, we first co-registered each subject’s qT1 scan to the ICBM152 template and applied the 
resulting transform to each participant’s U1 and U2 map. We applied existing transformations to bring 
the histological U1 and U2 spaces to the same template space (Xiao et al., 2019; Paquola et al., 
2021). This allowed us to contrast the UMAP components of all 10 subjects and BigBrain, along the 
same x, y, and z coordinate axes.

rsfMRI image processing and analysis
Processing employed micapipe v.0.2.3 (Cruces et al., 2022), which combines functions from AFNI 
(Cox, 1996), FastSurfer (Henschel et al., 2020; Henschel et al., 2022; Faber et al., 2022), work-
bench command (Marcus et al., 2011), and FSL (Jenkinson et al., 2012). Images were reoriented, as 
well as motion and distortion corrected. Motion correction was performed by registering each time-
point volume to the mean volume across time points, while distortion correction utilized main phase 
and reverse phase encoded field maps. Leveraging our multi-echo acquisition protocol, nuisance vari-
able signals were removed with tedana (DuPre et al., 2021). Volumetric timeseries were averaged for 
registration to native FastSurfer space using boundary-based registration (Greve and Fischl, 2009), 
and mapped to individual surfaces using trilinear interpolation. Cortical timeseries were mapped to 
the hemisphere-matched fs-LR template using workbench tools then spatially smoothed with a 10 mm 
Gaussian kernel. Surface- and template-mapped cortical timeseries were corrected for motion spikes 
using linear regression of motion outliers provided by FSL. Functional and anatomical spaces were 
co-registered using label-based affine registration (Avants et al., 2010) and the SyN algorithm avail-
able in ANTs (Avants et al., 2011).

Functional network mapping of amygdala microstructural subregions
We averaged the rsfMRI timeseries within amygdala subregions defined by the highest and lowest 
25% of values in each participant’s own qT1-derived U1 component. Functional connectivity of each 
amygdala subregion to the rest of the cortex was determined using Pearson correlation between the 
timeseries of each amygdala subregion and each cortical vertex. Resulting correlation coefficients 
underwent Fisher R-to-Z transformation to increase the normality of the distribution of functional 
connectivity values.

A mixed effects model implemented with the BrainStat toolbox (Larivière et al., 2023) assessed 
differences between the cortical connectivity profiles of each U1 subregion, while considering age, 
and sex, and fixed effects and subject identity as a random effect. We corrected findings for family-
wise errors (FWE) using random field theory (pFWE <0.05; cluster-defining threshold (CDT)=0.01). We 
further contextualized differences in each connectivity map by decoding connectivity profiles with 
functional activation maps aggregated in NeuroSynth (Yarkoni et al., 2011) and made available via 
BrainStat (Larivière et  al., 2023). Our approach contrasted the overall connectivity profile of the 
amygdala to those of each of its microstructurally-defined subregions. First, we divided subregional 
amygdala-cortical connectivity profiles into seven established functional network communities (Yeo 
et al., 2011) and contrasted their average connectivity strength across each network. Meta-analytic 
functional decoding of the connectivity patterns of both amygdala subregions and the whole amyg-
dala also highlighted different cognitive affiliations of each seed. Spatial correlations between the 
amygdala’s cortical connectivity profile and spatial activation maps associated with each term allowed 

https://doi.org/10.7554/eLife.101950
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us to retain ten terms associated with different cognitive domains. We then compared the association 
between the activation patterns of retained terms and the cortical connectivity profiles of each amyg-
dala U1 subregion.
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