001     1049120
005     20251211202157.0
024 7 _ |a 10.1109/AMPS66841.2025.11219956
|2 doi
037 _ _ |a FZJ-2025-05212
100 1 _ |a Pasella, Manuela
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 2025 IEEE 15th International Workshop on Applied Measurements for Power Systems (AMPS)
|c Bucharest
|d 2025-09-24 - 2025-09-26
|w Romania
245 _ _ |a Impact of Pseudo-Measurements Generation on Distribution System State Estimation
260 _ _ |c 2025
|b IEEE
300 _ _ |a 1-6
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1765435959_28636
|2 PUB:(DE-HGF)
520 _ _ |a The evolving structural changes in power networks have a significant impact on the management of monitoring and control applications. Among them, Distribution System State Estimation (DSSE) faces inherent limitations due to uncertainties arising from these transformations, which often lead to a degradation in the quality of measurements and pseudo-measurements used in state estimation routines. To mitigate these challenges, Machine Learning techniques are increasingly recognized as effective solutions to improve the performance of monitoring applications. In this context, this paper aims to assess how the prediction of active and reactive powers obtained through a Multi-Layer Perceptron (MLP) neural network and compared with simple benchmark models, affects DSSE performance. Firstly, starting from real data collected from the Forschungszentrum Jülich campus, the MLP model has been characterized and, finally, DSSE has been evaluated by means of several numerical simulations. The preliminary exploratory results have suggested that the proposed model shows promising potential in improving the accuracy of DSSE. These initial results suggest that it may be worth investigating more complex neural models in the future, with the aim of further enhancing DSSE performance and providing system operators with increasingly reliable monitoring and control tools.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 1
536 _ _ |a 1123 - Smart Areas and Research Platforms (POF4-112)
|0 G:(DE-HGF)POF4-1123
|c POF4-112
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 1
|u fzj
700 1 _ |a Cannas, Barbara
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Carta, Daniele
|0 P:(DE-Juel1)186779
|b 3
|u fzj
700 1 _ |a Muscas, Carlo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pegoraro, Paolo Attilio
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pisano, Fabio
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Sitzia, Carlo
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1109/AMPS66841.2025.11219956
856 4 _ |u https://ieeexplore-dev.ieee.org/document/11219956
909 C O |o oai:juser.fz-juelich.de:1049120
|p VDB
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179029
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186779
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1123
|x 2
914 1 _ |y 2025
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21