| Home > Publications database > Error Analysis and Parallel Scaling Study of a Parareal Parallel-in-Time Integration Algorithm for Particle-in-Fourier Schemes > print |
| 001 | 1049166 | ||
| 005 | 20260108204822.0 | ||
| 024 | 7 | _ | |a 10.1137/24M1673097 |2 doi |
| 024 | 7 | _ | |a 1064-8275 |2 ISSN |
| 024 | 7 | _ | |a 0196-5204 |2 ISSN |
| 024 | 7 | _ | |a 1095-7197 |2 ISSN |
| 024 | 7 | _ | |a 2168-3417 |2 ISSN |
| 037 | _ | _ | |a FZJ-2025-05249 |
| 082 | _ | _ | |a 510 |
| 100 | 1 | _ | |a Muralikrishnan, Sriramkrishnan |0 P:(DE-Juel1)195613 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Error Analysis and Parallel Scaling Study of a Parareal Parallel-in-Time Integration Algorithm for Particle-in-Fourier Schemes |
| 260 | _ | _ | |a Philadelphia, Pa. |c 2025 |b SIAM |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1767862010_26297 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We propose a parareal based time parallelization scheme in the phase-space for the particle-in-Fourier (PIF) discretization of the Vlasov–Poisson system used in kinetic plasma simulations. We use PIF with a coarse tolerance for the nonuniform fast Fourier transforms, or the standard particle-in-cell scheme, combined with temporal coarsening, as coarse propagators. This is different from the typical spatial coarsening of particles and/or Fourier modes for parareal, which are not possible or effective for PIF schemes. We perform an error analysis of the algorithm and verify the results numerically with Landau damping, two-stream instability, and Penning trap test cases in 3D-3V. We also implement the space-time parallelization of the PIF schemes in the open-source, performance-portable library IPPL and conduct scaling studies up to 1536 A100 GPUs on the JUWELS booster supercomputer. The space-time parallelization utilizing the parareal algorithm for the time parallelization provides up to 4–6 times speedup compared to spatial parallelization alone and achieves a push rate of around 1 billion particles per second for the benchmark plasma mini-apps considered. |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Speck, Robert |0 P:(DE-Juel1)132268 |b 1 |u fzj |
| 773 | _ | _ | |a 10.1137/24M1673097 |g p. S311 - S336 |0 PERI:(DE-600)1468391-X |p 311 - 336 |t SIAM journal on scientific computing |v n/a |y 2025 |x 1064-8275 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1049166/files/parapif.pdf |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:1049166 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)195613 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)132268 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-01 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-01 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SIAM J SCI COMPUT : 2022 |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-01 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-01 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-01 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|