001049169 001__ 1049169
001049169 005__ 20251211202158.0
001049169 0247_ $$2doi$$a10.1093/insilicoplants/diaf018
001049169 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05252
001049169 037__ $$aFZJ-2025-05252
001049169 082__ $$a004
001049169 1001_ $$0P:(DE-Juel1)185995$$aBaker, Dirk N$$b0$$eCorresponding author
001049169 245__ $$aVirtual world coupling with photosynthesis evaluation for synthetic data production
001049169 260__ $$a[Oxford]$$bOxford University Press$$c2025
001049169 3367_ $$2DRIVER$$aarticle
001049169 3367_ $$2DataCite$$aOutput Types/Journal article
001049169 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765476044_23336
001049169 3367_ $$2BibTeX$$aARTICLE
001049169 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049169 3367_ $$00$$2EndNote$$aJournal Article
001049169 500__ $$aThis work has partly been funded by the EUROCC2 project funded by the European High-Performance Computing Joint Undertaking (JU) and EU/EEA states under grant agreement No 101101903. This work has partly been funded by the German Research Foundation under Germany’s Excellence Strategy, EXC-2070 - 390732324 - PhenoRob and by the German Federal Ministry of Education and Research (BMBF) in the framework of the funding initiative ‘Plant roots and soil ecosystems, significance of the rhizosphere for the bio-economy’ (Rhizo4Bio), subproject CROP (ref. FKZ 031B0909A). The authors would like to acknowledge funding provided by the BMBF to the Gauss Centre for Supercomputing via the InHPC-DE project (01–H17001).
001049169 520__ $$aIn this work, we couple the functional–structural plant model CPlantBox to the Unreal Engine by exploiting the implemented raytracing pipeline to evaluate light influx on the plant surface. There are many approaches for photosynthesis computation and light evaluation, though they typically are limited by versatility, compute speed, or operate on much coarser resolutions. This work specifically addresses the concern that data generation pipelines tend to be unresponsive and do not include model-based knowledge as part of the generation pipeline. Using established photosynthesis solvers, we model the interaction between the Unreal Engine and the FSPM to measure physical properties in the virtual world. This is successful if we are able to reproduce experimental results using an in silico model. As part of the pipeline, we generate a surface geometry and utilize material shaders that are designed to establish a baseline surface model for light interception and transmission, based on simple parameter sets that can be calibrated. Using a Selhausen field experiment as baseline, we reproduce the photosynthesis effectiveness of the plants in the 2016 winter wheat experiments. Our pipeline is deeply intertwined with data generation and has been proven to perform well at scale. In this work, we build on our previous work by showcasing both a simulation study of a light evaluation as well as quantifying how well our system performs on high-performance computing systems.
001049169 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001049169 536__ $$0G:(BMBF)031B0910B$$aRhizo4Bio (Phase 1): RhizoWheat - Rhizosphärenprozesse und Ertragsdepressionen in Weizenfruchtfolgen, TP B (031B0910B)$$c031B0910B$$x1
001049169 536__ $$0G:(GEPRIS)390732324$$aDFG project G:(GEPRIS)390732324 - EXC 2070: PhenoRob - Robotik und Phänotypisierung für Nachhaltige Nutzpflanzenproduktion (390732324)$$c390732324$$x2
001049169 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049169 7001_ $$0P:(DE-Juel1)180766$$aGiraud, Mona$$b1
001049169 7001_ $$0P:(DE-Juel1)168541$$aGöbbert, Jens Henrik$$b2
001049169 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b3
001049169 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b4
001049169 7001_ $$00000-0002-8041-5542$$aHvannberg, Ebba Þóra$$b5
001049169 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b6
001049169 773__ $$0PERI:(DE-600)3019806-9$$a10.1093/insilicoplants/diaf018$$gVol. 7, no. 2, p. diaf018$$n2$$pdiaf018$$tIn silico plants$$v7$$x2517-5025$$y2025
001049169 8564_ $$uhttps://juser.fz-juelich.de/record/1049169/files/diaf018.pdf$$yOpenAccess
001049169 909CO $$ooai:juser.fz-juelich.de:1049169$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001049169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180766$$aForschungszentrum Jülich$$b1$$kFZJ
001049169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168541$$aForschungszentrum Jülich$$b2$$kFZJ
001049169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b3$$kFZJ
001049169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b4$$kFZJ
001049169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b6$$kFZJ
001049169 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001049169 9141_ $$y2025
001049169 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001049169 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001049169 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-10
001049169 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001049169 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIN SILICO PLANTS : 2022$$d2024-12-10
001049169 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:37:02Z
001049169 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:37:02Z
001049169 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
001049169 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-10
001049169 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001049169 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-10
001049169 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001049169 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001049169 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-10
001049169 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001049169 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001049169 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001049169 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001049169 980__ $$ajournal
001049169 980__ $$aVDB
001049169 980__ $$aUNRESTRICTED
001049169 980__ $$aI:(DE-Juel1)IBG-3-20101118
001049169 9801_ $$aFullTexts