001     1049169
005     20251211202158.0
024 7 _ |a 10.1093/insilicoplants/diaf018
|2 doi
024 7 _ |a 10.34734/FZJ-2025-05252
|2 datacite_doi
037 _ _ |a FZJ-2025-05252
082 _ _ |a 004
100 1 _ |a Baker, Dirk N
|0 P:(DE-Juel1)185995
|b 0
|e Corresponding author
245 _ _ |a Virtual world coupling with photosynthesis evaluation for synthetic data production
260 _ _ |a [Oxford]
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765476044_23336
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This work has partly been funded by the EUROCC2 project funded by the European High-Performance Computing Joint Undertaking (JU) and EU/EEA states under grant agreement No 101101903. This work has partly been funded by the German Research Foundation under Germany’s Excellence Strategy, EXC-2070 - 390732324 - PhenoRob and by the German Federal Ministry of Education and Research (BMBF) in the framework of the funding initiative ‘Plant roots and soil ecosystems, significance of the rhizosphere for the bio-economy’ (Rhizo4Bio), subproject CROP (ref. FKZ 031B0909A). The authors would like to acknowledge funding provided by the BMBF to the Gauss Centre for Supercomputing via the InHPC-DE project (01–H17001).
520 _ _ |a In this work, we couple the functional–structural plant model CPlantBox to the Unreal Engine by exploiting the implemented raytracing pipeline to evaluate light influx on the plant surface. There are many approaches for photosynthesis computation and light evaluation, though they typically are limited by versatility, compute speed, or operate on much coarser resolutions. This work specifically addresses the concern that data generation pipelines tend to be unresponsive and do not include model-based knowledge as part of the generation pipeline. Using established photosynthesis solvers, we model the interaction between the Unreal Engine and the FSPM to measure physical properties in the virtual world. This is successful if we are able to reproduce experimental results using an in silico model. As part of the pipeline, we generate a surface geometry and utilize material shaders that are designed to establish a baseline surface model for light interception and transmission, based on simple parameter sets that can be calibrated. Using a Selhausen field experiment as baseline, we reproduce the photosynthesis effectiveness of the plants in the 2016 winter wheat experiments. Our pipeline is deeply intertwined with data generation and has been proven to perform well at scale. In this work, we build on our previous work by showcasing both a simulation study of a light evaluation as well as quantifying how well our system performs on high-performance computing systems.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a Rhizo4Bio (Phase 1): RhizoWheat - Rhizosphärenprozesse und Ertragsdepressionen in Weizenfruchtfolgen, TP B (031B0910B)
|0 G:(BMBF)031B0910B
|c 031B0910B
|x 1
536 _ _ |a DFG project G:(GEPRIS)390732324 - EXC 2070: PhenoRob - Robotik und Phänotypisierung für Nachhaltige Nutzpflanzenproduktion (390732324)
|0 G:(GEPRIS)390732324
|c 390732324
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Giraud, Mona
|0 P:(DE-Juel1)180766
|b 1
700 1 _ |a Göbbert, Jens Henrik
|0 P:(DE-Juel1)168541
|b 2
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 3
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 4
700 1 _ |a Hvannberg, Ebba Þóra
|0 0000-0002-8041-5542
|b 5
700 1 _ |a Schnepf, Andrea
|0 P:(DE-Juel1)157922
|b 6
773 _ _ |a 10.1093/insilicoplants/diaf018
|g Vol. 7, no. 2, p. diaf018
|0 PERI:(DE-600)3019806-9
|n 2
|p diaf018
|t In silico plants
|v 7
|y 2025
|x 2517-5025
856 4 _ |u https://juser.fz-juelich.de/record/1049169/files/diaf018.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1049169
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180766
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168541
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157922
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IN SILICO PLANTS : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:37:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:37:02Z
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21