001049183 001__ 1049183
001049183 005__ 20251211202159.0
001049183 0247_ $$2doi$$a10.48550/ARXIV.2510.03773
001049183 037__ $$aFZJ-2025-05266
001049183 1001_ $$0P:(DE-Juel1)196668$$aVolmer, Mats$$b0$$ufzj
001049183 245__ $$aReduction of the impact of the local valley splitting on the coherence of conveyor-belt spin shuttling in $^{28}$Si/SiGe
001049183 260__ $$barXiv$$c2025
001049183 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1765464422_29041
001049183 3367_ $$2ORCID$$aWORKING_PAPER
001049183 3367_ $$028$$2EndNote$$aElectronic Article
001049183 3367_ $$2DRIVER$$apreprint
001049183 3367_ $$2BibTeX$$aARTICLE
001049183 3367_ $$2DataCite$$aOutput Types/Working Paper
001049183 520__ $$aSilicon quantum chips offer a promising path toward scalable, fault-tolerant quantum computing, with the potential to host millions of qubits. However, scaling up dense quantum-dot arrays and enabling qubit interconnections through shuttling are hindered by uncontrolled lateral variations of the valley splitting energy $E_{VS}$. We map $E_{VS}$ across a $40 \, $nm x $400 \, $nm region of a $^{28}$Si/Si$_{0.7}$Ge$_{0.3}$ shuttle device and analyze the spin coherence of a single electron spin transported by conveyor-belt shuttling. We observe that the $E_{VS}$ varies over a wide range from $1.5 \, μ$eV to $200 \, μ$eV and is dominated by SiGe alloy disorder. In regions of low $E_{VS}$ and at spin-valley resonances, spin coherence is reduced and its dependence on shuttle velocity matches predictions. Rapid and frequent traversal of low-$E_{VS}$ regions induces a regime of enhanced spin coherence explained by motional narrowing. By selecting shuttle trajectories that avoid problematic areas on the $E_{VS}$ map, we achieve transport over tens of microns with coherence limited only by the coupling to a static electron spin entangled with the mobile qubit. Our results provide experimental confirmation of the theory of spin-decoherence of mobile electron spin-qubits and present practical strategies to integrate conveyor-mode qubit shuttling into silicon quantum chips.
001049183 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001049183 588__ $$aDataset connected to DataCite
001049183 650_7 $$2Other$$aQuantum Physics (quant-ph)
001049183 650_7 $$2Other$$aFOS: Physical sciences
001049183 7001_ $$0P:(DE-Juel1)196096$$aStruck, Tom$$b1$$ufzj
001049183 7001_ $$0P:(DE-HGF)0$$aTu, Jhih-Sian$$b2
001049183 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, Stefan$$b3$$ufzj
001049183 7001_ $$0P:(DE-HGF)0$$aEsposti, Davide Degli$$b4
001049183 7001_ $$0P:(DE-HGF)0$$aScappucci, Giordano$$b5
001049183 7001_ $$0P:(DE-HGF)0$$aCywiński, Łukasz$$b6
001049183 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b7$$ufzj
001049183 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars R.$$b8$$ufzj
001049183 773__ $$a10.48550/ARXIV.2510.03773
001049183 909CO $$ooai:juser.fz-juelich.de:1049183$$pVDB
001049183 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196668$$aForschungszentrum Jülich$$b0$$kFZJ
001049183 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196096$$aForschungszentrum Jülich$$b1$$kFZJ
001049183 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128856$$aForschungszentrum Jülich$$b3$$kFZJ
001049183 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b7$$kFZJ
001049183 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b8$$kFZJ
001049183 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001049183 9141_ $$y2025
001049183 920__ $$lyes
001049183 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001049183 980__ $$apreprint
001049183 980__ $$aVDB
001049183 980__ $$aI:(DE-Juel1)PGI-11-20170113
001049183 980__ $$aUNRESTRICTED