001     1049183
005     20251211202159.0
024 7 _ |a 10.48550/ARXIV.2510.03773
|2 doi
037 _ _ |a FZJ-2025-05266
100 1 _ |a Volmer, Mats
|0 P:(DE-Juel1)196668
|b 0
|u fzj
245 _ _ |a Reduction of the impact of the local valley splitting on the coherence of conveyor-belt spin shuttling in $^{28}$Si/SiGe
260 _ _ |c 2025
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1765464422_29041
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Silicon quantum chips offer a promising path toward scalable, fault-tolerant quantum computing, with the potential to host millions of qubits. However, scaling up dense quantum-dot arrays and enabling qubit interconnections through shuttling are hindered by uncontrolled lateral variations of the valley splitting energy $E_{VS}$. We map $E_{VS}$ across a $40 \, $nm x $400 \, $nm region of a $^{28}$Si/Si$_{0.7}$Ge$_{0.3}$ shuttle device and analyze the spin coherence of a single electron spin transported by conveyor-belt shuttling. We observe that the $E_{VS}$ varies over a wide range from $1.5 \, μ$eV to $200 \, μ$eV and is dominated by SiGe alloy disorder. In regions of low $E_{VS}$ and at spin-valley resonances, spin coherence is reduced and its dependence on shuttle velocity matches predictions. Rapid and frequent traversal of low-$E_{VS}$ regions induces a regime of enhanced spin coherence explained by motional narrowing. By selecting shuttle trajectories that avoid problematic areas on the $E_{VS}$ map, we achieve transport over tens of microns with coherence limited only by the coupling to a static electron spin entangled with the mobile qubit. Our results provide experimental confirmation of the theory of spin-decoherence of mobile electron spin-qubits and present practical strategies to integrate conveyor-mode qubit shuttling into silicon quantum chips.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Quantum Physics (quant-ph)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Struck, Tom
|0 P:(DE-Juel1)196096
|b 1
|u fzj
700 1 _ |a Tu, Jhih-Sian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Trellenkamp, Stefan
|0 P:(DE-Juel1)128856
|b 3
|u fzj
700 1 _ |a Esposti, Davide Degli
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Scappucci, Giordano
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cywiński, Łukasz
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-Juel1)172019
|b 7
|u fzj
700 1 _ |a Schreiber, Lars R.
|0 P:(DE-Juel1)172641
|b 8
|u fzj
773 _ _ |a 10.48550/ARXIV.2510.03773
909 C O |o oai:juser.fz-juelich.de:1049183
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196668
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)196096
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172641
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21