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ABSTRACT

Comprehensive assessment of the various aspects of the brain’s microstructure requires the use of complementary
imaging techniques. This includes measuring the spatial distribution of cell bodies (cytoarchitecture) and nerve fibers
(myeloarchitecture). The gold standard for cytoarchitectonic analysis is light microscopic imaging of cell-body stained
tissue sections. To reveal the 3D orientations of nerve fibers, 3D Polarized Light Imaging (3D-PLI) has been introduced
as a reliable technique providing a resolution in the micrometer range while allowing processing of series of complete
brain sections. 3D-PLI acquisition is label-free and allows subsequent staining of sections after 3D-PLI measurement.
By post-staining for cell bodies, a direct link between fiber- and cytoarchitecture can potentially be established in the
same section. However, inevitable distortions introduced during the staining process make a costly nonlinear and
cross-modal registration necessary in order to study the detailed relationships between cells and fibers in the images.
In addition, the complexity of processing histological sections for post-staining only allows for a limited number of
such samples. In this work, we take advantage of deep learning methods for image-to-image translation to generate
a virtual staining of 3D-PLI that is spatially aligned at the cellular level. We use a supervised setting, building on a
unique dataset of brain sections, to which Cresyl violet staining has been applied after 3D-PLI measurement. To
ensure high correspondence between both modalities, we address the misalignment of training data using Fourier-
based registration. In this way, registration can be efficiently calculated during training for local image patches of
target and predicted staining. We demonstrate that the proposed method can predict a Cresyl violet staining from
3D-PLI, resulting in a virtual staining that exhibits plausible patterns of cell organization in gray matter, with larger cell
bodies being localized at their expected positions.
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1. INTRODUCTION

To understand the organizational principles of the brain,
complementary imaging techniques are used to high-
light different aspects of brain architecture. Two import-
antaspects of the microstructural organization are fiber-and
cytoarchitecture (Amunts & Zilles, 2015; Nieuwenhuys,
2013). While cytoarchitecture encompasses the spatial
distribution and shape of cell bodies in the cerebral cor-
tex and subcortical nuclei, fiber architecture refers to the
course and composition of nerve fibers. However,
cytoarchitecture and fiber architecture are usually stud-
ied using different staining protocols, applied in differ-
ent sections. Only a few protocols are available to
combine cyto- and fiber staining in a single protocol, for
example, Luxol fast blue (Kliver & Barrera, 1953),
Bielschowsky (1904) or the triple staining by Novotny
and Novotny (1977). While they allow visualizing cell
bodies and fibers in one and the same section, they lack
information about 3D fiber orientations. As a result, they
do not support the tracing of axons and fiber bundles
over long distances.

3D-Polarized Light Imaging (3D-PLI) addresses this
limitation. It is a microscopic imaging technique for eval-
uating the three-dimensional orientation of myelinated
nerve fibers in entire, unstained histological brain sec-
tions (Axer & Amunts, 2022; Axer, Amunts, et al., 2011;
Axer, Graessel, et al., 2011). The technique can achieve
an in-plane resolution of 1.3 pym, capturing structures at
the level of individual fibers and small fiber bundles. 3D-
PLI has been used to gain insights into the architecture of
nerve fibers in different brain regions, such as the human
hippocampus (Zeineh et al., 2017), the sagittal stratum
(Caspers et al., 2022), and the vervet monkey visual sys-
tem (Takemura et al., 2020). In addition, 3D-PLI has been
used to validate fiber tractography algorithms and the
interpretation of DW-MRI (Caspers & Axer, 2019). 3D-PLI
potentially allows joint imaging of fiber tracts and neuro-
nal cell bodies (Zeineh et al., 2017) due to diffraction pat-
terns, differences in the density of birefringent material,
and locally variable attenuation. However, this possibility
has not yet been validated.

Cytoarchitecture can be studied in histological sec-
tions of postmortem brains with Cresyl violet. The stain-
ing provides contrast due to staining of the rough
endoplasmic reticulum. This allows to study cell shape,
density and distribution, which vary between brain
regions. Due to its high spatial resolution, microscopic
analysis of histological sections is considered the gold
standard to verify structural parcellations (Amunts &
Zilles, 2015). Recent advances in high-throughput scan-
ning, data processing algorithms, and computational
capacities have enabled the creation of 3D human brain

atlases based on cytoarchitecture, such as BigBrain
(Amunts et al., 2013), the Allen Adult Human Brain Atlas
(AAHA, Ding et al., 2016), and the Julich Brain probabilis-
tic atlas (Amunts et al., 2020).

Since 3D-PLI relies solely on optical properties of the
tissue, it is label-free and can be combined with a stain-
ing of the same tissue after its measurement. Post-
staining, for example, with Cresyl violet, enables a
complementary visualization of neuronal cell bodies,
potentially establishing a direct link between cytoarchi-
tecture with 3D fiber-architecture. This requires, however,
a complex histological processing, which limits the num-
ber of available samples, increases the risk of tissue
damage and may lead to deformations of the section. To
correct for deformation and artifacts in the images of the
two modalities requires a nonlinear registration step.
However, 3D-PLI and Cresyl violet stained tissue share
only a few automatically identifiable cross-modal regis-
tration landmarks, such as blood vessels or morphologi-
cal landmarks. Therefore, post-staining of sections
imaged with 3D-PLI is feasible but technically challeng-
ing. Since it does not scale efficiently to larger datasets,
it is not applicable to whole-brain stacks involving thou-
sands of sections.

Therefore, we aim to train a deep neural network
model to perform image-to-image translation from 3D-
PLI to a Cresyl violet staining. Such an approach is often
denoted as virtual histological staining, which refers to
computational methods that generate color-coded
images of biological tissue without the need for tradi-
tional staining techniques (Latonen et al.,, 2024). The
methods, instead, utilize optical properties of the tissue,
such as birefringence, autofluorescence, scattering, or
absorption to create images that emulate the appearance
of stained tissue. A virtual Cresyl violet staining spatially
aligned with 3D-PLI would allow the use of established
tools for cytoarchitectonic analysis, such as automatic
cell instance segmentation (Upschulte et al., 2022),
directly on 3D-PLI data. Furthermore, identification of cell
bodies would provide detailed registration landmarks for
cross-modal registration (Ounkomol et al., 2018), thereby
offering the opportunity to perform joint acquisition of
aligned fiber and cytoarchitecture at a larger scale than
possible today. A virtual staining could, in principle, be
applied to the whole brain. However, white matter regions
remain challenging due to the predominance of glial cells,
mainly oligodendrocytes forming the myelin sheath,
which are not distinguishable from nerve fibers in the 3D-
PLI signal. Therefore, in the present study, we focus our
analysis on gray matter regions.

One of the earliest applications of label-free imaging
for visual staining was Quantitative Phase Imaging (QPI,
Curl et al., 2004). QPI measures the phase shift of light
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passing through a sample, producing high-resolution
images that reveal the optical properties of the tissue. It
was used to generate images of collagen fibers, red
blood cells, and other tissue structures without staining
(Curl et al., 2004; Park et al., 2018). Later, machine-
learning algorithms, especially generative models, have
been trained to recognize and virtually stain different tis-
sue structures in unstained images by performing image-
to-image translation. They have successfully generated
color-coded images of tissue that replicate the appear-
ance of histological stainings, such as a virtual hematox-
ylin and eosin (H&E), Masson’s trichrome, and Jones’
stain from QPI of label-free tissue (Rivenson et al., 2019),
a transformation of H&E stained tissue into Masson’s tri-
chrome, periodic acid-Schiff (PAS), or Jones’ stain (de
Haan et al.,, 2021; Yang et al.,, 2022). However, these
stains are not very good at distinguishing the different
components of the nervous tissue.

Machine learning algorithms were also used to pre-
dict fluorescence-labeled images from transmitted-light
z-stacks (Christiansen et al., 2018; Cross-Zamirski
et al., 2022; Ounkomol et al., 2018) or 3D fluorescence
structures and a FluoroMyelin stain from bright-field and
polarization images of brain slices (Guo et al., 2020).
The methods typically use cross-entropy (Christiansen
et al., 2018), mean absolute (L1) loss (Guo et al., 2020),
or style-related losses such as conditional generative
adversarial network (GAN) loss (Cross-Zamirski et al.,
2022; de Haan et al., 2021; Rivenson et al., 2019). While
including a GAN objective encourages prediction of
realistic-looking images, it has no clear mechanism to
preserve content when conditioned on a particular input
image, and thus may introduce artificial structures
(Cohen et al., 2018). A combination with a pixel-wise
reconstruction loss (e.g., L1 loss) mitigates this problem
of GAN training and improves accuracy of predictions
(Isola et al., 2017).

Since methods using paired training data for super-
vised image-to-image translation typically produce more
accurate predictions than unpaired methods (Latonen
et al., 2024; Zhu et al., 2017), a pixel-accurate alignment
of training data is desired. This requires virtual staining
methods to either perform a costly registration step or
directly acquire paired images. A paired acquisition with
3D-PLI, however, is not feasible and a lack of structural
overlap, such as a sufficient number of visible cell
instances between the investigated modalities, makes
pixel-accurate registration challenging. Therefore, to alle-
viate the need for perfectly paired training data, we pro-
pose a supervised learning objective performing local
online registration of training pairs combined with a
translational-invariant style comparison. This allows us to
train the model on imperfectly registered image pairs with

strong content preservation as in paired image-to-image
translation, while enabling realistic prediction of subtle
structures like cell bodies (Fig. 1).

The main contributions of our method are the following:

e We apply the matching of Gram matrix representa-
tions as a texture sensitive style loss for the virtual
staining, as previously used for texture synthesis
(Gatys et al., 2015). Since the computation of Gram
matrices is translation invariant, it allows a direct
comparison of image statistics between coarsely
aligned training examples. It, therefore, improves
the accuracy of predicted cell instances over com-
monly used GAN style loss (Gatys et al., 2015).

* An online registration head for improving registra-
tion accuracy of local image pairs after pre-
alignment of larger tissue tiles during training. We
consider Fourier-based registration methods, which
can be computed efficiently in real-time on modern
GPU hardware.

e An equivariance loss to improve the accuracy of cell
instance predictions by addressing the inherent
agnosticism of loss computation to constant dis-
placements through online registration.

2. MATERIALS AND METHODS

2.1. Microscopic imaging of histological brain
sections

We demonstrate the proposed virtual staining approach
on a set of brain sections for which Cresyl violet staining
has been performed after 3D-PLI measurement. The
brain sample for this study was obtained from a healthy
2.4-year-old adult male vervet monkey (Wake Forest-ID
1818; Axer et al., 2020; Takemura et al., 2020) in accor-
dance with the Wake Forest Institutional Animal Care and
Use Committee (IACUC #A11-219) and conforming the
AVMA Guidelines for the Euthanasia of Animals. To obtain
an undistorted volumetric reference, a T2 weighted MRI
was acquired in-vivo 1 day prior to sacrifice. The brain
was removed from the skull within 24 hours after flushing
with phosphate-buffered saline and perfusion fixated
with 4% buffered paraformaldehyde. It was stored for
several weeks at -70°C in 20% glycerin solution for cryo-
protection, and then sliced coronally with 60 pm section
thickness using a large-scale cryostat microtome (Poly-
cut CM 3500, Leica Microsystems, Germany). Blockface
images of the frozen tissue block were taken with a CCD
camera before cutting each brain section. The images
were reconstructed into a 3D blockface volume to pro-
vide an undistorted reference for section realignment
(Schober et al., 2015).
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Fig. 1. The proposed virtual staining workflow. (A) Preprocessing of 3D-PLI sections that were post-stained with Cresyl
violet. As paired training data, regions of interest (ROIs) are manually cropped (red boxes) and affine registered using large
blood vessels as landmarks (green marker). Background pixels in train sections are masked, and retardation values are
scaled using gamma correction for visualization purposes. (B) Training of a U-Net model using patches, extracted from
same random locations (yellow boxes) in 3D-PLI modalities direction ¢, retardation sing, transmittance /- and the Cresyl
violet staining. 3D-PLI patches are used as input to the model to predict a virtual Cresyl violet staining. The Cresyl violet
patch acts as target and is rigidly aligned with the prediction during the training procedure. The alignment is performed
by our proposed online registration head using Fourier-based correlation of pixels. A loss £ is computed between aligned
target and prediction. (C) Inference using the trained U-Net model to virtually stain unseen sections or ROIs. Inputs are
divided into overlapping tiles, which are processed independently by the U-Net model. The predictions are then stitched
back together to form the complete virtual staining.

2.1.1. Image acquisition section. Inside the LMP-1 microscope, sections were

For 3D-PLI acquisition, brain sections were scanned placed on a specimen stage between a rotating linear

using a polarizing microscope (LMP-1, Taorad, Germany)
with 1.3 pum resolution (Axer & Amunts, 2022; Axer,
Graessel, et al., 2011). The focus level of the LMP-1 was
manually adjusted to the center of the tissue for each

and a circular polarizer on top of an incoherent light
source with a wavelength of 550 + 5 nm. Images were
taken by a CCD camera for nine equidistant rotation
angles p of the rotating linear polarizer, covering 180° of
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rotation. At each pixel, the measured intensity of the
images followed a sinusoidal profile as

/ . .
I = ET(‘I+S|n(2p—2(p)S|n6). (1)

Using harmonic Fourier analysis, parameter maps of
transmittance (/,), retardation (sind), and fiber direction (¢)
were obtained from the measurements, with an image
size of approximately 34,000 x 44,000 pixels per section,
revealing their fine-grained nerve fiber architecture
(Fig. 2A-C). Each parameter map was stored in a sepa-
rate HDF5 file as uncompressed 32-bit floating-point
single-channel image.

After 3D-PLI acquisition, brain sections were washed,
fixed and stained for cell bodies with Cresyl violet Nissl
staining to reveal their cellular architecture. Whole-slide flat
scans (single-plane) were performed using a Huron Tissue-
Scope LE120 high-throughput scanner at 1 um in-plane
resolution (Fig. 2D). The resulting images were saved as
RGB color images with eight bit color depth (pixel values
ranging from 0 to 255) in uncompressed BigTIFF format.

2.1.2. Optical effects of cell bodies on the 3D-PLI
signal

While 3D-PLI was primarily developed to map fiber orien-
tations, cell bodies contribute to the measured signal as

A

Transmittance

Fiber orientation

well. In the following, we summarize how absorption, dif-
fraction, birefringence and scattering effects of cells are
represented in 3D-PLI parameter maps.

Previous work reported that larger cell bodies appear as
dark spots in transmittance maps (Zeineh et al., 2017),
which encode light extinction caused by any material along
the optical path. However, in the present transmittance
maps, cell bodies are not distinguished by higher absorp-
tion relative to the surrounding fiber architecture (Fig. 2A).
This is likely because their membranes remained intact
due to the short postmortem time before tissue fixation.

Diffraction significantly impacts the 3D-PLI signal at
the given wavelength and resolution. In cortical regions,
diffraction can cause pixels of transmittance maps inside
the tissue to appear brighter than the background, partic-
ularly along sharp edges such as the walls of cell bodies
and blood vessels. The intensity of these diffraction pat-
terns on the transmittance map depends on the level of
the focal plane of the objective lens.

Another relevant effect is observed in retardation
maps, which encode the average amount and orientation
of birefringent material within each tissue voxel, primarily
collagen and myelinated nerve fibers. Since cell bodies
contain significantly less birefringent material than sur-
rounding fibers, their presence causes local attenuation
of the retardation appearing as dark patches between
cortical fibers (Fig. 2B).

Retardation

Cresyl violet staining

Fig. 2. Data modalities and registration challenges for training section 544. (A-C) 3D-PLI parameter maps: Transmittance,
retardation, and fiber orientation in HSV color space (hue: fiber direction; saturation/brightness: retardation). Background
pixels are masked for visualization purposes only. (D) Affine registered Cresyl violet staining. The pial surface of the

3D-PLI acquisition is shown as a contour plot in D for reference. Between both data acquisitions remains a nonlinear
misalignment that cannot be resolved by a global affine transformation. At a local scale, the remaining misalignment is
approximately linear. Yellow arrows indicate blood vessels that can be used as mutual registration landmarks for coarse

alignment.
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Light scattering is ubiquitous in polarized light bright-
field transmission microscopy, but can generally be
treated as random background noise. It does not appear
to systematically affect either transmittance or retarda-
tion, with the only known exception being increased
scattering at steep fibers running approximately perpen-
dicularly to the section plane and darkening the transmit-
tance significantly.

2.1.3. Tissue shrinkage estimation

Deformations induced by histological processing include
shrinkage or swelling of brain tissue. To correct these
effects, the extent of shrinkage can be estimated from
the ratio between the histologically processed and true
brain volume, which can be represented by the fresh
weight of the whole brain with an estimated mean spe-
cific density (Amunts et al., 2005, 2013) or an MRI refer-
ence (Wagstyl et al., 2020). In this work, we perform 2D
segmentation of cell bodies in 3D-PLI parameter maps
and measure their in-plane areas. To ensure comparabil-
ity of cell sizes across studies, we estimate 2D shrinkage
factors using a postmortem MRI of the same brain as a
reference.

We first estimate shrinkage in the 3D-PLI acquisition
by affine registration of the 3D reconstructed blockface
volume to the MRI. The linear part of the affine transfor-
mation in physical space has eigenvalues [0.984, 1.005,
1.015], indicating a global volume change of less than 1%
and no axis-specific systematic deviation. In a second
step, we calculate 2D shrinkage factors for each brain
section as the quotient between the area occupied by tis-
sue in the 3D-PLI measurement and its corresponding
blockface image. For test section #559, we estimate a
global 2D shrinkage factor of 0.97, indicating a slight
swelling of the 3D-PLI measurement relative to its original
area within the MRI. This observation is consistent across
all sections, with 2D shrinkage factors between 0.95 and
0.99. We correct the in-plane sizes of segmented cell
body areas in 3D-PLI by applying the individual 2D shrink-
age factor of each section, assuming an approximately
uniform area change of cells and surrounding tissue.

2.2. Initial cross-modality alignment

After the subsequent processing of brain tissue, Cresyl
violet images exhibit a deformation relative to the 3D-PLI
acquisition. To align both modalities, an initial affine reg-
istration of whole brain sections is performed by manual
identification of large blood vessels as landmarks visible
in both modalities.

Performing the initial affine registration reveals
remaining nonlinear deformations as shown in Figure 2D.

Since nonlinear deformations typically have low spatial
frequencies, causing smooth, large-scale distortions, we
expected near-linear deformations at smaller scales.
Therefore, performing an additional more local linear
registration would lead to a better fit. We subsequently
crop square regions of interest (ROls) with a size of 4,096
pixels (~5.3 mm) and without visible artifacts, covering
distinct cellular architectures across the whole coronal
plane. For all ROIs we perform additional affine registra-
tion and make sure that transformed landmarks have a
maximum distance of 70 pixels (91 pm) from their
matches (Fig. 1A). All ROIs are warped and resampled to
1.3 ym using linear interpolation to match the coordinate
space of 3D-PLI. While this results in a loss of precision
relative to the original resolution of Cresyl violet scans of
1 pm, matching the resolutions of both modalities facili-
tates subsequent processing and analysis steps.

2.3. Fourier-based online registration of image
patches

To correct the remaining misalignment of 3D-PLI and
Cresyl violet after affine registration of ROIs at a finer
local scale, we introduce an online registration head that
performs cross-modality alignment during training based
on model predictions of small image patches (Fig. 1B).
We assume that once the style transfer model has learned
to reconstruct microscopic landmarks (e.g., individual
cells or small blood vessels), such online registration will
promote the learning of additional landmarks until the
training can use pixel-aligned training examples.

The registration method performed during training
needs to be computationally efficient, since training will
require numerous registration iterations. Conventional
feature-based image registration methods are accurate
and can model nonlinear deformations but are computa-
tionally expensive and sensitive to image degradation. As
we assume deformations to be approximately linear at a
local scale, we take advantage of Fourier-based image cor-
relations (Tong et al., 2019), which can efficiently recover a
translation between images in the frequency domain.

2.3.1. Translational shift

Fourier-based image correlation methods are able to
retrieve a translational shift (Au, Av) between image func-
tions f(u,v) and g(u,v) defined for integer pixel coordi-
nates (u,v), such that f(u,v)=g(u+Au,v+Av). Both
functions f and g represent images of equal height H and
width W and are for now assumed to repeat periodically
with a periodicity of H and W, respectively.

A common approach to retrieve the translational shift
between f and g is to use circular cross-correlation
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(Tong et al., 2019), which can be efficiently computed in
the frequency domain as

CC°[a,b] = (f x g)[a,b]
= uzy“f(u—a,v—b)g(u,v) ©)

- (7 {FOF (9} Jla b,

for all integer shifts [a,b], where F denotes the Fourier
transformation, F~' its inverse, m its complex-
conjugate Fourier coefficients, and where we sum over all
pixel coordinates (u,v). The translational shift can subse-
quently be recovered by the location of the maximum
value in CC° as

(Au,Av) = argmax CC°[a, b]. (3)
(a.b)

Eq. (2) can be extended to the mean over squared dis-
tances between pixel values as

MSE°[a,b] = # (Fu—a,v —b)— g(u,v)?
@
-2(f xg)labl+ Y, (FFuv)+giuv)

HW

The translational shift (Au,Av) can be recovered ana-
log to Eq. (3) by computing the argmin. For periodic
image functions f and g, solutions of CC° and MSE® are
identical as the sum over squared functions 2 and g2[0,1]
is constant (Fienup, 1997).

Since histological images are not periodic, zero pad-
ding is applied to fill both images up to a shape of
(H, + Hg -1W, + Wg —1), in order to break periodicity and
allow processing of images with different heights H,, Hg
and widths W, Wg. The zero-padded images are
denoted by new image functions f, and g,. Furthermore,
additional masks M, and Mg are introduced, which have
a value of one at all pixel coordinates within original
height and width and zero elsewhere. We reformulate
Eq. (4) to a non-circular form as

(f2 oM, )-2(f, x gy)+(M, x g2)

MSE[a,b]= YRy
f g

[a.b], (5)

which can be efficiently computed by multiple applica-
tions of Eq. (2). Here, the cross-correlations of fZ and g?
with masks Mg and M,, respectively, ensure that pixel
values of the original unpadded images are not compared
with zero padding values. Furthermore, the score is
divided by the correlation between M, and M, to account
for the number of overlapping pixels between original

unpadded images. We apply the same division by M, Mg
also for CC° to retrieve a non-circular variant called CC.
While the solutions for circular CC° and MSE® are identi-
cal, the solutions for non-circular CC and MSE differ,
resulting in distinct registration metrics.

2.3.2. Rotation and scale

While relative scale and rotation between images can
also be retrieved in the frequency domain (Reddy &
Chatterji, 1996; Sheng, 1989), we expect only small rela-
tive rotation angles and minor scale variations due to the
initial affine registration by matching blood vessels.
Therefore, we leverage the parallel processing capability
of GPUs to perform an exhaustive search over a fixed set
of rotation angles without scaling adjustments. We calcu-
late registration metrics for every translational shift and
rotation and select the rotation angle and shift combina-
tion that yields a global optimum.

2.4. Conditional generation of Cresyl violet staining

Image-to-image translation refers to the process of gen-
erating images using a generator model G conditioned
on an input image x. Predictions G(x) of the model are
compared with actual target images y. In our case, we
translate from the domain of 3D-PLI images to Cresyl vio-
let. The translation is performed by a U-Net (Ronneberger
et al., 2015) serving as the generator model, which forms
the core of our image-to-image translation framework, as
illustrated in Figure 3. The three loss components used to
train the U-Net are described below.

2.4.1. Reconstruction loss

Similar to Isola et al. (2017), we use an L, loss between
target y and prediction G(x) to encourage pixel corre-
spondence in the reconstruction loss

£y =E,,[IR, 0 (1) =GO ©

where F?y,G(X) performs the proposed online registration to
spatially align y and G(x) before loss calculation. This
enables utilization of imperfectly aligned training data to
penalize any discrepancies in corresponding pixel values
between G(x)and y. To disable online registration, R, i
can be replaced by the identity function.

)

2.4.2. Style loss

We consider two alternative implementations of a style
loss L, both focussing on style preservation. We refer to
the first one as Gram loss, and the second as GAN loss.
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lllustration of the proposed virtual staining approach. Patches of 3D-PLI parameter maps transmittance /

T

retardation sind (scaled using gamma correction for visualization), and direction ¢ are used as input to a 2D convolutional
U-Net model as generator to predict a virtual Cresyl violet staining. An online registration head estimates a rigid
transformation R between a coarsely aligned Cresyl violet target patch and the prediction via Fourier-based registration.
Transformation R is used to align target and prediction at the patch level. We calculate three distinct loss components:
L., L and L. Reconstruction loss £, performs a pixel-wise comparison between prediction and aligned target. Style
loss L, compares feature maps of a VGG network encoder using Gram matrices to mimic the style of the target image.
Equivariance loss £, applies the same U-Net model a second time to a rotated version of the input by rotation Q. The
output is compared with the prediction rotated by same rotation Q, which promotes stability and avoids learning a

constant shift of pixels in the prediction.

For the Gram loss, we apply a texture-sensitive style
loss proposed by Gatys et al. (2015) based on squared
distances between Gram matrix representations of neural
network features. Given a pre-trained VGG encoder
(Simonyan & Zisserman, 2015), Gram matrix representa-
tions are computed from feature activations of its layers
to characterize the texture of images at different com-
plexities. For each layer /, the encoder produces a differ-
ent number of N, feature maps, each storing K, spatial
entries (i.e., height x width). Elements of the Gram matrix
l“jl. at layer | are computed as the inner product between
the i-th and j-th feature map F and F/, where each map
is flattened to a K,-dimensional vector:

K

i I =1
)= YFF (7)

k=1

Since the Gram matrix computation captures global
feature correlations rather than spatial locations, this
allows a translation-invariant comparison of image statis-
tics. The style loss is computed over all L layers of the
VGG encoder, using Gram matrix representations I'! for
the online registered target and ' for the prediction:

L 1 N N, ;o al)?
Ly=E,, ZKZNZ .:12(37‘”) . @)

=1 "N Y=t =

For the GAN loss, we consider adversarial training
(Goodfellow et al., 2014) to compare with previous work
in virtual staining (Cross-Zamirski et al., 2022; Rivenson
et al., 2019). We implement the GAN loss in the form of a
Wasserstein GAN (Arjovsky et al., 2017). In contrast to
conditional GAN training (Isola et al., 2017; Mirza &
Osindero, 2014), we do not condition the discriminator
on input images x, as this would cause the model to
reproduce any misalignment in the training data.

2.4.3. Equivariance loss

By registering target y to generator prediction G(x)
before loss calculation, displacements of objects in G(x)
relative to x are not captured by L. To prevent pixel shifts
in G(x), we enforce equivariance with respect to rota-
tions through the equivariance loss

£.=E,[[l(e(x)-c(aw)|, | ©)

where operator Q represents an image rotation of 180°.
Minimizing Eg. (9) ensures that pixels in G(x) correspond
to pixels at the same pixel coordinates in x as any dis-
crepancy would cause a mismatch of Q(G(x)) and
G(Q(x))-



A. Oberstrass, E. Vaca, E. Upschulte et al.

Imaging Neuroscience, Volume 4, 2026

2.4.4. Total loss formulation

All components are aggregated into the total loss

L=Ap+(1-1)Lg+ML,, (10)
with relative weightings A €[0,1] and n>0 as hyperpa-
rameters. We denote models that use Gram loss as the
style loss L, as Gram, and models that use GAN loss as
the style loss £, as GAN. When online registration is
enabled during computation of reconstruction loss L.,
the corresponding models are denoted as Gram+Reg
and GAN+Reg. Base models Gram and GAN compute
the reconstruction loss with online registration disabled.

2.5. Model training

For the generator G, we use the same 5-layer U-Net
(Ronneberger et al., 2015) with numbers of features [32,
64, 128, 256, 512] in all experiments, and adjust the input
and output channels to 3 according to our setup. To train
G, we use square 3D-PLI patches of 444 pixels size, rep-
resented by parameter maps transmittance (/;), retarda-
tion (sind) and direction (¢). We reformulate the 3D-PLI
parameters as triplets (/,, sin(3) cos(2¢), sin(d) sin(29)) to
resolve the circular behavior of direction ¢, standardize
the channels and stack them to the input of generator G.
Due to the fully convolutional approach of the U-Net
model without padding, the generated output predictions
have a reduced size of 260 pixels. Unless specified oth-
erwise, we use a patch size of 360 pixels for the target
Cresyl violet images, centered at the input patch position.
They are chosen to be larger than the model predictions
to allow the online registration to correct translational
shifts of up to 50 pixels in any direction, while keeping the
predictions fully contained within the target images. We
normalize image pixel values of the Cresyl violet staining
to the range of [0, 1].

For computing style loss L, we extract features from
a VGG19 model (Simonyan & Zisserman, 2015) to com-
pute the Gram loss. The VGG feature encoder network
has a depth of four layers and three input channels with
pre-trained weights on ImageNet (Deng et al., 2009). We
multiply the style loss Ly by a constant factor of 10 to
bring it to the same order of magnitude as reconstruction
loss L . For the training, we use Adam optimizer (Kingma
& Ba, 2017) with [31 =0.9, B2 =0.999 and a learning rate
of 102, If not stated otherwise, we use n=0.1 and A = 0.5
as default in the training objective in Eq. (10).

In the case of GAN style loss Lg, we use a 4-layer
convolutional network as discriminator with kernel size 4,
stride 2, padding 1, and feature size of [32, 64, 128, 256],
followed by batch normalization (loffe & Szegedy, 2015)

and Leaky Rel U after each convolution. For training, we
use the Wasserstein GAN (Arjovsky et al., 2017) objective
and a separate Adam optimizer for the discriminator and
the generator, using B, = 0.5, B, = 0.999 and a learning
rate of 10-4. We perform five updates for the discriminator
for one update of the generator and clamp discriminator
weights at 0.03 after each step.

2.5.1. Training data

For model training and evaluation, we use eight coronal
sections at the level of the central sulcus. Seven sections
are used for training and one section is kept for testing
with a gap of 0.6 mm between train and test sections
(Fig. 4A). From the training sections, 27 affine-aligned
ROls are extracted (Fig. 4B), where one ROI is held out
for validation to identify possible overfitting. For each
ROI, we extract joint target Cresyl violet images and 3D-
PLI modalities at the same center location. To maximize
the diversity of the training examples, we do not pre-
compute training patches but sample them randomly
during the training process. We use a batch size of 128
and draw 32,768 paired random patches per epoch
evenly distributed across the training ROls, resulting in
approximately 1,260 random samples per ROI per epoch.
All training is performed for 150 epochs or until model
convergence if validation loss did not decrease for at
least 50 epochs.

2.5.2. Data augmentation

To enhance the robustness of our trained models we
employ 3D-PLI-specific data augmentations, which were
carefully modified to keep physically plausible signal
parameters (Oberstrass et al., 2024). Specifically, we per-
form random rotation by angles between -180° and 180°
with mirror padding and horizontal and vertical random
flipping. In both cases, direction parameter maps ¢ are
corrected accordingly. Additionally, we perform Gaussian
blurring of 3D-PLI parameter maps for random standard
deviations up to o = 1.5 and kernel sizes of 3 or 5. We
scale thickness and attenuation coefficients for 3D-PLI
parameter maps by random values between 0.5 and 2.

2.5.3. Implementation

All models were trained on the supercomputer JURE-
CA-DC at the Jilich Supercomputing Centre (JSC,
Thornig, 2021) on a single node by splitting each batch
equally onto 4 NVIDIA A100 GPUs using distributed data-
parallel strategy. For data pre-processing 128 worker
processes were spawned on 128 CPU cores. For refer-
ence, training for 100 epochs took 8 hours with online
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Fig. 4. Localization of train and test data. (A) Seven
sections used for training (blue stripes) and one section
used for testing (red stripe) were taken at the level of the
central sulcus (CS; yellow dashed lines). Locations are
shown on top of the 3D reconstructed blockface of the
brain for reference. Train and test data are 0.6 mm apart
from each other. (B) Selected locations of train and test
regions of interest (ROIs), which are used for training and
testing the models. The images show ROls from each

of the train and test sections on top of globally affine
registered Cresyl violet images. Black contour plots outline
the pial surface of corresponding 3D-PLI sections for
reference.

registration and 4 hours without on this hardware. The
implementations are based on the Quicksetup-ai tem-
plate by the HelmholtzAl Consultants Munich,! using the
frameworks: PyTorch (Paszke et al.,, 2019), PyTorch
Lightning (Borovec et al., 2022) and Hydra (Yadan, 2019).

2.5.4. Online registration

For the online registration head, we restrict accepted
solutions of Eq. (5) to translation + rotation pairs that
cause the registered target to have full overlap with the

1 https://github.com/HelmholtzAl-Consultants-Munich/Quicksetup-ai
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prediction, avoiding loss calculation over zero-padded
values. We check the translation correction for 31 rotation
angles from -7.5° to 7.5° with steps of 0.5° and take the
translation + rotation pair with the best registration score.

3. EXPERIMENTS AND RESULTS

We compare a selection of performance scores to iden-
tify optimal hyperparameters of the proposed method
and assess the overall potential of the best performing
model. The main hyperparameters are the choice of the
online registration metric, the type of style loss L, its
relative weighting A to reconstruction loss L., and
whether to use the additional equivariance loss £.. To
reduce the massive computational demands by a rigor-
ous grid search across all hyperparameters, we choose
to identify a suitable choice for the online registration
metric and model variants using different loss compo-
nents independently before determining an optimal rela-
tive weighting A.

3.1. Experiment setup

3.1.1. Test data

We manually select four ROIs for model evaluation,
ensuring a diverse representation of different cytoarchi-
tectonic characteristics from the held-out test section
(Fig. 4B). The ROls contain primary motor cortex 4a, tem-
poral cortical area TE, the hippocampal cornu Ammonis
(CA) region, and parts of the putamen and globus palli-
dus (Pars interna and Pars externa) as subcortical struc-
tures (Fig. 5).

As the computation of image metrics requires a pre-
cise alignment of test data, we perform elastic registra-
tion of test ROIs based on landmarks and image intensity
using the bUnwarpdJ (Arganda-Carreras et al., 2006) algo-
rithm. We use predictions of an independently trained
Gram+Reg model as target. The predictions are used to
manually identify 15-25 characteristic cell clusters as
landmarks per ROI, which are confirmed by the location
and arrangement of faint shadows of cells visible in the
3D-PLI transmittance. For registration, we use an image
weight of 1.0, a landmark weight of 10.0, and a consis-
tency weight of 10.0. The strong weights for landmarks
and consistency are chosen to prevent the transforma-
tion field from overly conforming to the predictions and to
overcome local optima.

3.1.2. Evaluation scores

We evaluate the impact of different model parameter
choices on the quality of the predicted virtual staining by
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Primary motor cortex Hippocampus Temporal cortex Subcortical nuclei

Transmittance

Input
Retardation

Fiber orientation

Target
Cresyl violet staining

Prediction
Virtual staining

Fig. 5. Overview of ROIls used for the evaluation, which represent distinct cellular architectures. They were extracted
from section 559, located 0.6 mm apart from the training sections. Embedded windows show magnified details inside
each ROI. Columns each show one of the four test ROIs taken from the anterior subdivision of the primary motor cortex
(4a), the hippocampal cornu Ammonis (CA) region, temporal cortical area TE, and parts of the putamen and globus
pallidus (GP; a: GP Pars interna; b: GP Pars externa) as subcortical nuclei. The first three rows demonstrate 3D-PLI
modalities transmittance, retardation (scaled using gamma correction for visualization) and fiber orientation in HSV color
space (hue: fiber direction; saturation/brightness: retardation). The 3D-PLI modalities are compared to the registered target
Cresyl violet and predicted virtual staining.
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applying structural similarity index measure (SSIM, Wang
et al.,, 2004), mutual information (Ml), and root-mean-
square error (RMSE). For each metric, we report the mean
over all test ROIs. To evaluate how well cell positions are
preserved by different models, we compute F1 scores
based on cell instance segmentations by a contour pro-
posal network (CPN, Upschulte et al., 2022, 2023). Pre-
dicted cell instances are obtained from segmentations of
the virtual staining and compared to target cell instances
from the corresponding Cresyl violet images. For each
ROI, predicted and target cells are matched by calculat-
ing their intersection over union (loU), requiring a mini-
mum loU of 30% for a match. Each target cell can be a
match for at most one predicted cell. Matched instances
are counted as true positives, unmatched predicted cells
as false positives, and unmatched target cells as false
negatives. F1 scores are then computed from aggregated
counts across all ROIs. For the cell detection model, we
fine-tuned a pre-trained CPN? for cell body segmentation
in cell-stained microscopy images using the celldetec-
tion® Python package. Fine-tuning was performed on a
diverse mix of manually annotated images, as well as
synthetic data.

We restrict the computation of evaluation metrics to
gray matter, where most of the neuronal cell bodies are
located, excluding white matter and background pixels.
In test ROIs showing cortical regions, we further exclude
molecular layer | as it consists of only a few individual
neurons and exhibits a nonlinear deformation due to tis-
sue shrinkage, which could not be reliably corrected in
the registration. For the ROI showing the hippocampus,
we exclude the fascia dentata, as its granular layer con-
sists of very densely packed neurons, which cannot reli-
ably be distinguished and restrict the analysis to
hippocampal CA1-CA4 regions.

3.2. Online registration metric

To compute a pixel-aligned reconstruction loss we apply
the online registration head (Section 2.3). We consider
correlation-based registration metrics CC and MSE with
phase correlation (PC, Kuglin, 1975) and blur-invariant
phase correlation (BIPC, Ojansivu & Heikkila, 2007). We
apply a Hann window to PC and BIPC before their calcu-
lation to mitigate their bias towards the sharp image
edges (Gonzales & Woods, 2008).

To understand how image degradation effects can
influence the success of the online registration head, we
compare the robustness of the metrics against noise and
blur. A square target image with 460 pixels size is

2 ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c
3 https://github.com/FZJ-INM1-BDA/celldetection
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extracted from a random location in the Cresyl violet
staining. Next, a smaller moving tile with a size of 260
pixels is extracted from a random location within the tar-
get and distorted by gradually increasing noise or blur on
the image. We add noise from a zero-centered Gaussian
distribution with standard deviation ¢ increasing from 0
to 25 and Gaussian blur with increasing kernel sizes with
standard deviations ¢ growing from 0 to 50. The registra-
tion head is applied with each metric to realign the
degraded moving tile with its location in the target image.
We compare the hit rate over 100 examples per degrada-
tion step. The registration is considered successful if the
determined translational displacement remains within 5
pixels of the actual displacement.

Figure 6 shows that as blur increases, BIPC with a
Hann window achieves the best performance. This result
is expected, as the metric remains invariant to blur. We
also observe that CC and MSE perform best in mitigating
the effects of noise, while the other metrics fail already
with a minor amount of noise. Overall, MSE provides a
balanced tradeoff between blur and noise response.

To make an optimal choice of a registration metric for
online registration, we train Gram+Reg models with CC,
BIPC, PC, and MSE compared to a Gram model without
online registration. We use a Cresyl violet target patch
size of 360 pixels and predictions of 260 pixels, centered
within the target patch. This allows the online registration
to correct for a maximum of 50 pixels translation in each
dimension. For Gram+Reg models trained with CC, BIPC
and the Gram model, A = 0.1 was chosen as it improved
results compared to A = 0.5 for PC and MSE.

Table 1 shows a quantitative comparison of the mod-
els. Independent of the metric, the best results are
observed when using Gram+Reg with online registration
Among all metrics considered, the model with MSE per-
forms best.

3.3. Performance analysis of different model
variants

To justify including equivariance loss £ (Eq. (9)) in the
total loss, Figure 7 illustrates the effect of training differ-
ent models with this loss component enabled and dis-
abled. With £_ disabled (n = 0), cell instances in the
model predictions exhibit a relative displacement.
Enabling £, (n 0.1) improves the overlap of cell
instances with the original Cresyl violet staining.

To quantify the impact of the loss component £_ on
the predictions, we compare the models with £_ enabled
and disabled in Table 2. We consider Gram and
Gram+Reg, as well as GAN and GAN+Reg as model vari-
ants. All models use A =0.5 expect for the Gram model
without online registration, where A =0.1 showed better
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Fig. 6. Robustness of different online registration metrics against synthetic image distortions. We report the proportion
of correct rigid alignments for different blur (A) and noise (B) levels by registration metrics MSE, CC, PC, and BIPC. The
registration is considered successful (a hit) if the translational displacement obtained remains within 5 pixels of the actual

displacement.

Table 1. Performance of models trained with different
online registration metrics in terms of similarity of generated
images with ground truth.

Method Metric MIT RMSEJd SSIMT F1 7T
Gram - 0.126 33.6 0.354  30.2
Gram+Reg CC  0.136 33.0 0.379  34.4
BIPC  0.149 31.5 0.371 32.6

PC  0.185 31.9 0.415  38.0

MSE 0.226 20.8 0.444 41.3

We compare cross-correlation (CC), phase-correlation (PC), blur-
invariant phase-correlation (BIPC), and mean-squared error (MSE)
as online registration metrics against using no online registration
(-). Arrows indicate the direction of better performance (T higher is
better, | lower is better). Best scores per column in bold.

performance. Since displacements of cell instances in
the model predictions occur randomly with varying
strength, we report mean and standard errors across four
independent trainings. Models trained with £_ enabled
show the highest correspondence with the target stain-
ing. Without online registration, the advantage of includ-
ing £, becomes negligible. Furthermore, results in Table 2
demonstrate that Gram models outperform their
corresponding GAN models in all evaluation metrics.
Regardless of the variant used for style loss L, all mod-
els benefit from the online registration. We present aver-
aged scores across all test ROls. Individual scores per
ROI, are provided in Appendix Table A1 as additional
information.

A comparison of model predictions is shown in
Figure 8C for the whole cortical depth of an Isocortex
sample from temporal cortical area TE. GAN+Reg and
Gram+Reg provide the most realistic-looking reconstruc-
tions in terms of relative size and shape of cell bodies,
along with the differences between layers concerning cell
packing density. While Gram+Reg seems to be influ-
enced by technically-related inhomogeneities in staining
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intensity, GAN+Reg produces a clearer contrast between
stained cells and surrounding tissue. Gram+Reg detects
the transition from the cortex to white matter better than
GAN+Reg. Both methods introduce an artificial arrange-
ment of cells into cortical columns not present in the orig-
inal Cresyl violet staining.

To further analyze the ability of the methods to recon-
struct the laminar cell organization, we compute grey
level index (GLI) values (Zilles et al., 1978). GLI values
provide an established proxy for volume density of
stained cell bodies in gray matter regions and are used to
characterize the laminar architecture of cortical areas
(Schleicher et al., 2000). To compute GLI values, adaptive
thresholding is applied to create a mask of pixels occu-
pied by cell bodies for each image. The masks are subse-
quently down scaled by a factor of 16 to a spatial
resolution of 20.8 ym, with each value representing the
fraction of segmented pixels. Resulting GLI images,
cropped to the area between pial surface and the cortex/
white matter transition, are displayed for the Cresyl violet
target and the predictions in Figure 8D.

For each of the GLI images, 31 intensity profiles verti-
cally oriented to the cortical layers are extracted to repre-
sent the columnar distribution of GLI values. The profiles
are restricted to layers Il - VI since staining inhomogene-
ities make GLI values for layer | unreliable. To obtain one
representative profile for each image, the profiles are
averaged and smoothed using a mean filter with kernel
size 3 to improve the signal-to-noise ratio. The average
profiles are shown on top of each GLI image in Figure 8D.

The average GLI profile for the GAN model shows no
clear distinction between cortical layers lI-IV and misses
a peak for layer IV. The profile by Gram replicates peaks
for layers Il and IV but does not provide a clear represen-
tation of the cortical layers. GAN+Reg and Gram+Reg
both replicate peaks for the higher cell densities in layers
Il, IV and VI. Gram+Reg shows the clearest distinction
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Fig. 7. Example image illustrating how equivariance loss £ improves cell instance overlap of Gram+Reg and GAN+Reg
models. (A) 3D-PLI input as transmittance, retardation (scaled using gamma correction) and fiber orientation map in HSV
color space (hue: fiber direction; saturation/brightness: retardation). (B) Registered target Cresyl violet staining, a cell
segmentation by a CPN model, and the identified target cell instances. (C) Predicted virtual staining of models trained
with equivariance loss £, enabled (v) or disabled (X). Predicted cell instances (red) by each model are overlaid with the
target cells (gray) and F1 scores computed for cells in this specific image patch. Since the displacement occurs randomly,
a patch from our test set and random seeds for the models were manually selected that illustrate that effect. The patch

shows the pyramidal layer of the hippocampal CA1 region.

Table 2. Effect of the proposed online registration on models trained with different choices of style loss L.

L Reg. L, mi T RMSE | ssiM T F17
Gram v v 0.224 + 0.002 20.6+0.4 0.445 + 0.002 41.0+ 04
X 0.211 £ 0.004 30.2+0.4 0.432 + 0.004 35.2+ 1.2
X v 0.111£0.012 33.6+0.8 0.314 + 0.023 22.6+4.8
X 0.107 £ 0.007 342+0.3 0.304 +0.015 22.5+ 3.1
GAN v v 0.160 + 0.008 30.5+ 0.5 0.389 + 0.012 347116
X 0.126 + 0.008 33.0+ 0.4 0.347 £0.010 28.0+13
x v 0.085 + 0.008 38.1+05 0.249 + 0.001 12.9+0.3
X 0.096 + 0.008 38.8+1.7 0.253 + 0.005 13.9+1.5

Each variant is trained with online registration head (Reg.) and equivariance loss (L) enabled or disabled. MSE metric is used for online
registration and 1 = 0.1 for weighting of L. The deviation is reported as standard error over four independent trainings with different
random seeds. Arrows indicate the direction of better performance (T higher is better, 1 lower is better). Best scores per column in bold.

between layers and even replicates slightly nuanced
peaks of the profile within layers.

3.4. Effect of loss weighting parameters

To incorporate equivariance loss £, into previous models,
we set its weighting parameter to = 0.1. To validate this
choice, we perform training of Gram+Reg models with n
values ranging from 0 to 10. Results in Table 3 indicate that
performance is robust for n>0. Only when the equivari-
ance loss is entirely removed from training (setting n = 0),
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we observe a measurable negative effect on the results.
We report mean values and standard errors over four inde-
pendent trainings to show the significance of this effect.

To identify an optimal weighting A of the style loss in
Eq. (10), we train Gram+Reg models with different values
for A and MSE online registration metric. A quantitative
evaluation of the trained models in Table 4 shows that
larger values for A up to A = 0.75 achieve the best evalu-
ation scores. This indicates that the reconstruction loss
should be given a stronger weight but should not be used
exclusively (A =1).
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Fig. 8. Comparison of virtual stainings for a patch of temporal area TE. (A) 3D-PLI input visualized as fiber orientation in
HSV color space (hue: fiber direction; saturation/brightness: retardation) and transmittance. (B) Registered target Cresyl
violet staining for reference with annotations of cortical layers I-VI and white matter (wm). (C) Predicted virtual stainings
of GAN and Gram models and extended variants using MSE online registration (GAN+Reg, Gram+Reg). (D) GLI images
ranging from the pial surface to the cortex/white matter transition and average profiles (red lines) for layers II-VI.

A visual comparison of predictions of Gram+Reg
models trained with different choices for A is shown in
Figure 9 for selected crops from the test data. By using
L, only (i.e., A=1), the model is unable to reconstruct
details from the Cresyl violet staining. It is only able to
locate strongly pronounced structures such as the gran-
ular layer delineated in (ii). Independent of the style loss
weighting, the models do not resolve individual cell
instances present within the granular layer. Instead, they
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capture the overall cell density, represented by a contin-
uous dark purple color. By increasing emphasis on L
(i.e., with decreasing values for A), the generator is able
to reconstruct details such as neuronal cell bodies in
less dense regions in (i)-(iv) and blood vessels in (j). It is
also able to generate Glial cells to match the appear-
ance of white matter in (i) and (iii). However, generators
trained with an overweighting of style loss also tend to
miss some strongly pronounced structures in the
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Table 3. Ablation study on weighting parameter n of equivariance loss £, for a Gram+Reg model.

Method n M T RMSE | ssim T S
Gram+Reg 0.0 0.211 £ 0.004 30.2+0.4 0.432 + 0.004 352+1.2
0.01 0.225 + 0.002 29.5+0.3 0.446 + 0.001 41.6 £0.2
0.1 0.224 + 0.003 29.6 + 0.6 0.445 + 0.003 41.0 £0.4
1.0 0.220 + 0.001 29.4 + 0.1 0.445 + 0.001 41.4+0.2
10.0 0.224 + 0.002 29.4+0.3 0.446 + 0.001 412402

Performance is robust across a wide range of n > 0 values. Only when the loss term is completely removed (n = 0), we observe a
measurable degradation in performance. The deviation is reported as standard error over four independent trainings with different random
seeds. Arrows indicate the direction of better performance (T higher is better, | lower is better). Best scores per column in bold.

Table 4. Different values for weighting parameter A show ure 10A show that reconstruction of smaller cells < 50 ym?

that a balance between style loss ES and reconstruction has much lower F1 scores, below 20.0, throughout all
loss L, is required in the training of a Gram+Reg model. methods. With increasing 2D cell size, they can be iden-
Method A MIT RMSE! SSIMT F1T tified more accurately. The Gram+Reg model shows
Gram+Reg 0 0.124 338 0.340 28.6 highest F1 scores across all cell sizes and smallest varia-
0.03 0.162 31.9 0.394 361 tion between four independently trained models, mea-
0.25 0.210 30.7 0.436 39.8 sured as standard deviation.
0.5 0.226 29.8 0.444 41.3 Birefringent tissue, such as myelinated nerve fibers,
0.75  0.238 29.8 0.448 414 can obscure signals from other components in 3D-PLI.
0.97 0230 30.7 0.446 40.2 To examine whether this effect impacts the prediction of
1.0 0.090 38.0 0.347 0

cell instances in the virtual staining, we use retardation
Setting A = 0 means only L is used. Setting A =1 means only L is maps as a measure of birefringence strength. The maps
e Ao et e chctonofbtterperorance ! 9" are smoothed with a 10 pixels square median kernel to
reduce local variance and obtain values representative of
the surrounding tissue area. For each cell instance seg-
predictions, such as the blood vessels shown in (i) or mented by the CPN model in the virtual staining, we sam-
the Betz cells in (iv). ple a retardation value at its center location. Values are
grouped into intervals from 0.0 to 0.3 in steps of 0.05.
Since we focus the analysis on gray matter, larger retar-
dation values do not occur. As shown in Figure 10B, the
To assess the reliability of our method under varying bio- ability of all models to reconstruct cell instances
logical and imaging conditions, we analyze in how far the decreases significantly for cells dominated by stronger
reconstruction of cell instances depends on cell size and  retardation signals. For Gram+Reg this effect is minimal,
local strength of birefringence. We also examine how dif-  performing overall best.
ferent focus levels of the LMP-1 impair the quality of the We observe that the virtual staining intensities are not
virtual staining. always homogenous within generated images. Such
Larger cells are expected to be more pronounced in  effects can especially be observed as cloud-like patterns
3D-PLI parameter maps compared to smaller cells that in Figure 5 for the predicted virtual staining of ROIs show-
may be overshadowed by other tissue components such  ing the primary motor cortex and subcortical nuclei. These
as nerve fibers. To quantify the reliability of predicted variations coincide with variations in the diffraction pat-
cells in the virtual staining in relation to their size, we tern of the associated transmittance maps, which in turn
compute F1 scores for multiple bins of 2D in-plane cell can be influenced by the focus level of the LMP-1 micro-
sizes. Obtaining F1 scores for each bin requires compu- scope. To better quantify this relationship, we apply a
tation of true and false positives, as well as false nega- Gram+Reg model to predict virtual stainings from an
tives through matching of predicted and target cells with  example image showing the vervet entorhinal cortex, cap-
a minimum loU threshold of 0.3. We modify the computa- tured at three focus levels: centered on the tissue (+0 pm),
tion of true and false positives by matching only predicted  -30 pm and +30 pm. Results are summarized in Figure 11.
cells within that range with all cells in the target image. To  We observe the highest consistency in staining intensity
count false negatives, target cells within that range are at the lowest focus level of (-30 pm). Higher focus levels
matched with all cells in the prediction. Results in Fig- introduce an increasing amount of staining artifacts.

3.5. Influencing factors on model predictions
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Transmittance . . . - . 1.0

A

Fig. 9. Predicted virtual Cresyl violet stainings for different weightings between reconstruction and style loss
components. (A) 3D-PLI inputs as transmittance, retardation and fiber orientation in HSV color space (hue: fiber
direction; saturation/brightness: retardation). The retardation has been scaled using gamma correction for visualization.
(B) Registered target Cresyl violet staining. (C) Predicted virtual stainings of models trained with different weightings A
between reconstruction loss £, and style loss L. Setting A = 0 focuses on £ and setting A =10n £, exclusively. Gram
loss is used for L. Within each row, yellow markers indicate the same structures across all columns. (i) Temporal area
TE and underlying white matter with arrowheads highlighting blood vessels within white matter and cortical layer VI.

(i) Dentate gyrus of the hippocampus with a dashed line delineating the proximal end of the granular layer of the fascia
dentata (FD). (iii) Pyramidal layer of the cornu Ammonis (CA1) region of the hippocampus highlighted by dashed lines.
(iv) Layer V of the primary motor cortex with arrowheads highlighting two Betz cells.

A B

70 50

s GAN
. GAN+Reg
mm Gram
mm Gram+Reg

s GAN

m GAN+Reg
40 mm Gram

Bmm Gram+Reg

60
50
40
—
w
30

20

10

0

) © S © ©
b N ~ o3 >

& ~°°, s .
Segmented cell body area range [um?] Retardation

Fig. 10. Reliability of predicted cell instances increases with their size and decreases with a stronger retardation. We
report F1 scores between detected cell instances by a CPN model in the predicted and target stainings. F1 scores are
computed for intervals of (A) the segmented in-plane cell body area and (B) smoothed retardation maps. Retardation
values are sampled at each cell location. Each bar represents the average over four independently trained models. Error
bars show standard deviation.

4. DISCUSSION we want to discuss the design decisions of the proposed

Our ablation experiments in Sections 3.2, 3.3 and 3.4 virtual staining method and assess its reliability for down-

support the design decisions of the proposed virtual —Stréam analysis.
staining method. In Section 3.5, we investigated several We introduced an online registration head capable of
influencing factors on the predictions. In the following, approximating smooth nonlinear deformations, given
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Focus level: +30 pm Focus level: +0 pm Focus level: -30 um

Input
Retardation Transmittance

Fiber orientation

Prediction
Virtual staining

Fig. 11. Virtual staining quality varies with the focus level of the LMP-1 microscope, which influences the captured
diffraction patterns. Example images show the vervet entorhinal cortex with zoom-ins to the architecture of cortical layers
II-1ll. 3D-PLI inputs are represented as transmittance, retardation (scaled with gamma correction) and fiber orientation in
HSV color space (hue: fiber direction; saturation/brightness: retardation). The same Gram+Reg model is used to predict
virtual stainings from a focus level adjusted to the tissue center (+0 um) and 30 um above and below.
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sufficiently small patch sizes for training. Its accuracy is
inherently influenced by the choice of the registration
metric. We identified MSE in the Fourier domain through
multiple applications of cross-correlation as superior to
other typically used metrics in Fourier-based image reg-
istration, including PC. This is a notable observation, as
PC is a popular choice due to its robustness to intensity
variations and frequency-dependent noise (Tong et al.,
2019). However, during early training stages, model pre-
dictions are often blurred. The network tends to learn
coarse, low-frequency structures first. Additionally, ran-
dom weight initialization introduces noise in the first
steps. MSE appears more resilient to such blur and
frequency-independent noise, leading to more accurate
predictions (Fig. 6). This behavior can be explained by
PC’s reliance on strong high-frequency spectral peaks,
which are diminished by blur (Pedone et al., 2013). MSE,
in contrast, maintains sensitivity across the frequency
spectrum and can better handle smooth, low-detalil
inputs that dominate during initial training.

The applied pixel-wise reconstruction loss assumes a
precise alignment to provide an informative feedback
signal. However, the online registration head will typically
only succeed if a good contrast between structures is
being predicted. In other words, there is a cross-
dependency of accurate pixel reconstructions and pro-
ducing a high contrast over training iterations, which may
result in a conflict during training. This can be seen in
Figure 9, where a Gram+Reg model focussing on pixel
reconstruction only made heavily blurred predictions that
do not provide structural details for cell-precise registra-
tion. Adding a style loss component leads to more pro-
nounced contours while simultaneously achieving higher
pixel reconstruction accuracy (Table 4) through online
registration. This underpins the importance of the addi-
tional style loss, which does not depend on perfect align-
ment and guides the training to produce structures. Still,
some manual pre-alignment was required to keep the
registration error of training data within 70 pixels (91 pym)
and ensure sufficient structural overlap between training
patches. This limited the amount of available training
data, as larger registration errors, such as those from the
initial affine alignment of whole sections, were too large
for the online registration to succeed.

Apparently, the choice for Gram or GAN as style loss
should be considered in the light of the application. Train-
ing with Gram loss led to more accurate cell localization
and pixel values (Table 2). However, it was affected by
staining intensity inhomogeneities, resulting in blurry cells
(Fig. 8). GAN loss, on the other hand, produced higher
contrast in cells but with lower accuracy. This could be a
consequence of the Gram loss referring to the specific tar-
get image, while the GAN loss refers to the average scor-
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ing of the discriminator across the distribution, less than
the precision with respect to an individual image.

The choice of style loss function also impacts the sta-
bility and complexity of the training process. When using
GAN loss, the training process has to be carefully moni-
tored. If training collapses, restarting is often necessary.
It requires careful balancing of discriminator and genera-
tor capacities and tuning of style and reconstruction loss
weighting. Training with Gram loss, on the other hand, is
generally more convenient to train. It requires no balanc-
ing of model capacities, is robust to loss balancing, and
does not collapse during training.

We expect that the expressiveness of the Gram matrix
representation could be enhanced by replacing the VGG
encoder, pre-trained on ImageNet, with a domain-specific
model, which is powerful on microscopy data. This is
technically motivated by the observation that higher-level
features in ImageNet-pretrained networks, such as VGG,
are optimized for object semantics in natural images
(e.g., faces, animals, vehicles), which are irrelevant in the
context of fine-grained texture characteristic of micros-
copy images (Stuckner et al., 2022). In contrast,
microscopy-specific encoders are better suited to cap-
ture such low- to mid-level textural features and have
been shown to improve clustering (Oberstrass et al.,
2024), segmentation (Stuckner et al., 2022), and the eval-
uation of generative models (Kropp et al., 2024) over
those trained on ImageNet. Therefore, computation of
Gram matrices using domain-specific encoders (Schiffer,
Amunts, et al., 2021; Schiffer, Spitzer, et al., 2021; Spitzer
et al., 2017) or emerging foundation models for histology
(Tran et al., 2024) might further enhance representation of
cytoarchitectural characteristics.

Throughout all models, we observed occasional stain-
ing inhomogeneities in the predicted virtual stainings. An
example of local-scale variation is the inhomogeneity
observed in Figure 8, which may be attributed to the tiling
strategy used during model inference to transfer whole
sections. Since the model lacks a global view of the sec-
tion, it may reproduce variations in the training data at the
local patch level. At a larger scale, this effect was pro-
nounced in the form of stripe patterns, for example in the
primary motor cortex ROI (Fig. 5). These patterns typi-
cally coincide with inhomogeneities in the 3D-PLI trans-
mittance maps. During the mounting process of the
60 pm thick sections in 20% glycerol solution on the
object slide the gray matter is more prone to swelling
than the more compact white matter, leading to tissue
expansion, mechanical stress and tape flutter especially
in the cortex due to its higher flexibility. The free-floating
tissue between object slide and coverslip shapes waves
of up to 30 um in amplitude. These waves affect the focus
level and the light incidence on the tissue, hence the
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effective birefringence, modifying the polarization state of
the transmitted light. This caused the observed stripe
patterns in the transmittance maps and very likely con-
tributed to the staining inhomogeneities.

Cell body membranes and blood vessel walls pose
hard edges in the cortex, resulting in diffraction patterns
even brighter than the background field. Varying of the
focus level of the LMP-1 microscope allows optical scan-
ning of the Poisson spots induced by diffraction. Cell
bodies are highlighted with higher contrast by shifting
and lowering the focal plane to the top and the bottom of
the tissue by approximately £30 um (Fig. 11). The ability
to predict cells from 3D-PLI measurements was shown to
be sensitive to variations in the focus level. An effective
countermeasure against waves in the tissue, to maintain
a constant level across the entire section, is to weight the
open coverslips after embedding overnight. In addition,
the acquisition of multiple levels for each section could
potentially provide missing information. For the given
dataset, however, these potential solutions were not
applicable, and measurements could not be easily
repeated. Since shifting the focus toward the tissue sur-
face degrades optical resolution, a center focus level is
used by default in 3D-PLI for an optimal representation of
nerve fibers. The acquisition of multiple focus levels of
130 pm to increase the visibility of cell bodies would sig-
nificantly increase the measurement effort. Nevertheless,
it will be an important consideration for future investiga-
tions to include multiple focus levels in each measure-
ment to improve cell extraction.

It must be noted that shrinking and swelling of the tissue
also affects the measured areas of individual 2D segmented
cell bodies. Tissue deformation in histology is complex,
involving anisotropic effects and differences between cellu-
lar and extracellular structures (Dorph-Petersen et al., 2001;
West, 2013), which cannot be fully captured by the global
shrinkage factor estimated in Section 2.1.3. At the same
time, there are only sparse data available that quantifies
such effects, and the precise conditions of histological pro-
cessing differ between each other, and it can be assumed
that such differences influence the specific shrinkage
values. In paraffin-embedded human sections, a mean dif-
ference of 9% between gray and white matter shrinkage
has been reported (Kretschmann et al., 1982). As frozen
sections generally show less in-plane deformation than
paraffin sections (West, 2013), we treat this value as an
upper bound for our acqusition. Since gray matter contains
relatively more cell bodies than white matter, similar shrink-
age of gray and white matter suggests that shrinkage of
cell bodies and neuropil should also not differ significantly
(Amunts et al., 1999). By performing non-linear co-
registration of Cresyl violet to 3D-PLI and applying a subse-
quent global correction of cell sizes to account for swelling
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effects from MRI to 3D-PLI, we assume that major shrink-
age effects are compensated. However, residual local vari-
ations or relative slice-to-slice differences may persist and
will require a more systematic approach in future work.
While most of the larger cells (>100 pm? in-plane size)
could be localized in 3D-PLI parameter maps, smaller
cells were often missed or misplaced in the predictions.
This is expected as smaller cell structures are often dom-
inated by a stronger signal of intersecting nerve fibers or
overlay each other due to the high section thickness of
60 pm required for 3D-PLI. In our experiments, we
observed that stronger birefringence, corresponding to
higher retardation values, resulted in reduced capability
of models to reconstruct cell instances. Since birefrin-
gence increases with myelin density and homogeneity,
predictions in regions with densely packed myelinated
nerve fibers, such as white matter, are thus less reliably
captured by the virtual stainings. In white matter, detect-
ing cell bodies may even be infeasible, as the predomi-
nant oligodendrocytes form the myelin sheath and are
therefore indistinguishable from it. In gray matter, this lim-
itation may explain the stronger arrangement of cells into
cortical columns in the predictions compared to the tar-
get images in Figure 8, as the strong signal of myelinated
radial fibers can obscure underlying cell instances. The
presence or absence of this arrangement is one of the
criteria used to identify cortical areas, which might impair
downstream interpretation of the predicted architecture.
As shown by the differences in F1 values in Appendix
Table A1, cells were reconstructed more accurately in
isocortical areas (motor cortex and temporal cortex) than
in the hippocampus or the subcortical nuclei (putamen
and globus pallidus). The lower F1 in the putamen com-
pared to the motor and temporal areas can be attributed
to its neuronal composition and the fundamentally differ-
ent spatial arrangement of cell bodies in cortical versus
subcortical regions, as well as their relation to fiber bun-
dles. The putamen is composed of medium-sized spiny
neurons and relatively small interneurons arranged
around and between bundles of myelinated fibers, which
course through the putamen and give rise to its charac-
teristic striated appearance (Heilbronner et al., 2025). In
this region, two challenges reduce predictability: small
interneurons are difficult to detect with our approach, and
fiber bundles may intersect or obscure cell bodies, mak-
ing them harder to reconstruct. Moreover, the cell bodies
of spiny neurons can resemble fiber bundles oriented
perpendicular to the section plane, appearing as dark
patches in the transmittance image. The globus pallidus
contains relatively large but sparsely distributed neurons,
which are embedded in a dense matrix of multidirection-
ally oriented myelinated fibers (Heilbronner et al., 2025).
Here, predictability is reduced by the number and com-
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plex spatial organization of intersecting myelinated fiber
bundles and blood vessels. The low F1 value in patches
extracted from the CA1-CAS regions of the hippocampus
is more difficult to explain, though it may result from the
fact that they cover both the pyramidal layer, with its
numerous and relatively large pyramidal cells, and the
radiatum layer, which contains sparsely packed and rela-
tively small interneurons (Zhao & Palomero-Gallagher,
2025), which are difficult to detect with our method.

Our Gram+Reg model produced larger cells at expected
positions and generated images with a plausible appear-
ance, making virtual stainings useful for cross-modality
registration - at present the most relevant application. They
also allowed the application of cytoarchitectonic tools such
as cell segmentation or computation of GLI profiles for cor-
tical layer characterization on 3D-PLI images. As a future
perspective, the ability to detect cell bodies in 3D-PLI may
enhance the computation of 3D fiber orientations within
gray matter, which is a prerequisite for fiber tractography.
This could be achieved by improving the estimation of
myelination, for example through the identification of vox-
els dominated by cell bodies, and potentially also support
the localization of axon terminals. However, virtual stain-
ings occasionally contained artifacts, including staining
inhomogeneities, omission of smaller cells, or the introduc-
tion of implausible cytoarchitectonic features. These issues
may reflect biases in the training data, model-related arti-
facts, or missing cellular signatures in the 3D-PLI parame-
ter maps. The virtual staining allowed the identification by
a neuroanatomist (N.P.-G.) of the borders between the
CA1, CA2, and CA3 regions of the hippocampus, the bor-
der between the primary motor and primary somatosen-
sory areas, or the border between the retrosplenial cortex
and cingulate area 23. However, it was not possible to
identify the border between the core and lateral belt audi-
tory areas, because it is characterized by differences in the
packing density of small pyramids (Hackett et al., 2001),
which currently cannot be reliably predicted. Therefore, we
do not yet consider the method sufficiently robust for reli-
able cytoarchitectonic brain area mapping. Nevertheless,
we are convinced that expanding the number of training
sections, brain regions, and focus levels across brains and
species can improve model performance and generaliz-
ability. While such expansion would require re-training,
each additional sample would teach the model novel archi-
tectural patterns, improving its robustness across domains.

5. CONCLUSIONS

Motivated by previous observations that larger cells are
encoded in 3D-PLI parameter maps alongside fiber ori-
entations (Zeineh et al., 2017), we introduced a deep
learning model for transforming 3D-PLI maps into virtual

21

Cresyl violet cell body stainings. This approach enables
joint visualization of fiber tracts and cell bodies in the
same tissue. Compared to real post-staining, the model
may offer a scalable alternative that avoids manual labor.

A central contribution of our approach is the integra-
tion of an online registration head during training. This
component eliminates the need for explicit, pixel-
accurate multimodal registration, which is commonly
required in virtual staining pipelines (de Haan et al., 2021;
Rivenson et al., 2020; Yang et al., 2022). It is a simple but
highly efficient add-on that can be combined with various
loss formulations, leveraging model-estimated land-
marks, to continuously refine the alignment over time.

The developed method enables localization of most of
the larger cell bodies in gray matter (>100 pm?2 in-plane size)
from 3D-PLI and a successful adaptation to the appear-
ance of real Cresyl violet stainings. As such, it expands the
usability of 3D-PLI in large-scale data settings, allowing vir-
tual staining at scale. While such synthetic data cannot and
should not replace real histological measurements, it offers
promising opportunities in downstream analysis. Although
we see the present method not yet robust enough for
cytoarchitectonic mapping, potential applications include
cross-modal image registration to align real Cresyl violet
and 3D-PLI, performing cell segmentation in 3D-PLI
images, or missing data imputation in serial section stacks.
Especially in interleaved modalities, this could enable the
reconstruction of complete datasets. Of course, such
applications require careful quality control, a clear separa-
tion and demarcation of synthetic data from real measure-
ments, and careful interpretation of derived results.

The outcomes of this study lay the groundwork for pro-
spective investigations focused on enhancing 3D-PLI
analysis, particularly through the exploration of dedicated
cell detection techniques to directly extract cell body
instances from 3D-PLI data. Furthermore, the findings
serve as a motivation for gathering additional training
data, aiming to refine and extend the application of the
virtual Cresyl violet staining to a broader range of sections,
brains, and species. While the current model is trained
specifically to replicate Cresyl violet stainings, the same
methodology can in principle be adapted to other staining
types, provided appropriate retraining is performed. Future
research should focus on further investigating its transfer-
ability to other datasets, staining protocols, and brains.

DATA AND CODE AVAILABILITY

The training pipeline for presented Gram+Reg and
GAN+Reg models is available on GitHub.*

4 https://github.com/FZJ-INM1-BDA/pli2cells
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Code for the online registration,® data augmentations
for 3D-PLI images,® visualization methods for 3D-PLI
modalities,” as well as additional dependencies® are
hosted on our external GitLab server.

ROIs employed for the training and testing of the mod-
els in this study, along with a selection of model predic-
tions, are available in our central institutional repository
(Oberstrass et al., 2025). In addition, the repository
includes whole-slide predictions for test section 559
along with corresponding 3D-PLI modalities.
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Appendix Table A1. Specific quantitative results per test ROI.

ROI Method M T RMSE | ssiM T F1 T

Motor cortex Gram 0.061 £ 0.013 33.9+1.0 0.306 = 0.024 248+3.5
Gram+Reg 0.168 + 0.003 29.2+ 0.6 0.446 + 0.002 429+ 0.3
GAN 0.117 £0.016 34.7+1.1 0.268 £ 0.010 16.8+ 1.0
GAN+Reg 0.165 £ 0.015 29.6+1.0 0.394 £ 0.013 36.3 2.1

Hippocampus Gram 0.184 £ 0.015 34.5+0.9 0.340+£ 0.013 194 +23
Gram+Reg 0.303 + 0.003 31.1+0.5 0.448 + 0.001 314+ 04
GAN 0.078 £ 0.016 443+ 31 0.262 = 0.016 6.9+1.3
GAN+Reg 0.151 £ 0.036 32.1 £ 0.6 0.373 £ 0.027 249+1.9

Temporal cortex Gram 0.077 £ 0.018 33.9+ 0.8 0.319 £ 0.040 31.7t 45
Gram+Reg 0.236 + 0.003 29.1+04 0.497 + 0.004 52.7+0.4
GAN 0.051 £ 0.006 43.1+54 0.238 = 0.019 18.3 £ 2.7
GAN+Reg 0.192 £ 0.015 30.1+1.5 0.460 = 0.017 496+ 1.3

Subcortical nuclei Gram 0.122 + 0.007 32.0+ 0.6 0.290 £ 0.016 15,7+ 2.2
Gram+Reg 0.190 + 0.004 29.2+04 0.388 + 0.001 29.4+ 0.5
GAN 0.138 + 0.028 33.0+0.8 0.245 + 0.013 11.4+£0.9
GAN+Reg 0.132 £ 0.014 29.9+0.7 0.330 £ 0.014 209+1.6

The deviation is reported as standard error over four independent trainings with different random seeds. Arrows indicate the direction of
better performance (T higher is better, | lower is better). Best scores per ROI in bold.
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