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ABSTRACT

Comprehensive assessment of the various aspects of the brain’s microstructure requires the use of complementary 
imaging techniques. This includes measuring the spatial distribution of cell bodies (cytoarchitecture) and nerve fibers 
(myeloarchitecture). The gold standard for cytoarchitectonic analysis is light microscopic imaging of cell-body stained 
tissue sections. To reveal the 3D orientations of nerve fibers, 3D Polarized Light Imaging (3D-PLI) has been introduced 
as a reliable technique providing a resolution in the micrometer range while allowing processing of series of complete 
brain sections. 3D-PLI acquisition is label-free and allows subsequent staining of sections after 3D-PLI measurement. 
By post-staining for cell bodies, a direct link between fiber- and cytoarchitecture can potentially be established in the 
same section. However, inevitable distortions introduced during the staining process make a costly nonlinear and 
cross-modal registration necessary in order to study the detailed relationships between cells and fibers in the images. 
In addition, the complexity of processing histological sections for post-staining only allows for a limited number of 
such samples. In this work, we take advantage of deep learning methods for image-to-image translation to generate 
a virtual staining of 3D-PLI that is spatially aligned at the cellular level. We use a supervised setting, building on a 
unique dataset of brain sections, to which Cresyl violet staining has been applied after 3D-PLI measurement. To 
ensure high correspondence between both modalities, we address the misalignment of training data using Fourier-
based registration. In this way, registration can be efficiently calculated during training for local image patches of 
target and predicted staining. We demonstrate that the proposed method can predict a Cresyl violet staining from 
3D-PLI, resulting in a virtual staining that exhibits plausible patterns of cell organization in gray matter, with larger cell 
bodies being localized at their expected positions.
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vervet monkey brain

Received: 20 May 2025  Revision: 4 November 2025  Accepted: 25 November 2025  Available Online: 8 December 2025

https://doi.org/10.1162/IMAG.a.1079
https://crossmark.crossref.org/dialog/?doi=10.1162/IMAG.a.1079&domain=pdf&date_stamp=2026-01-07
mailto:a.oberstrass@fz-juelich.de


2

A. Oberstrass, E. Vaca, E. Upschulte et al.	 Imaging Neuroscience, Volume 4, 2026

1.  INTRODUCTION

To understand the organizational principles of the brain, 
complementary imaging techniques are used to high-
light different aspects of brain architecture. Two import-
ant aspects of the microstructural organization are fiber- and 
cytoarchitecture (Amunts & Zilles, 2015; Nieuwenhuys, 
2013). While cytoarchitecture encompasses the spatial 
distribution and shape of cell bodies in the cerebral cor-
tex and subcortical nuclei, fiber architecture refers to the 
course and composition of nerve fibers. However, 
cytoarchitecture and fiber architecture are usually stud-
ied using different staining protocols, applied in differ-
ent sections. Only a few protocols are available to 
combine cyto- and fiber staining in a single protocol, for 
example, Luxol fast blue (Klüver & Barrera, 1953), 
Bielschowsky (1904) or the triple staining by Novotny 
and Novotny (1977). While they allow visualizing cell 
bodies and fibers in one and the same section, they lack 
information about 3D fiber orientations. As a result, they 
do not support the tracing of axons and fiber bundles 
over long distances.

3D-Polarized Light Imaging (3D-PLI) addresses this 
limitation. It is a microscopic imaging technique for eval-
uating the three-dimensional orientation of myelinated 
nerve fibers in entire, unstained histological brain sec-
tions (Axer & Amunts, 2022; Axer, Amunts, et al., 2011; 
Axer, Graessel, et al., 2011). The technique can achieve 
an in-plane resolution of 1.3 µm, capturing structures at 
the level of individual fibers and small fiber bundles. 3D-
PLI has been used to gain insights into the architecture of 
nerve fibers in different brain regions, such as the human 
hippocampus (Zeineh et  al., 2017), the sagittal stratum 
(Caspers et al., 2022), and the vervet monkey visual sys-
tem (Takemura et al., 2020). In addition, 3D-PLI has been 
used to validate fiber tractography algorithms and the 
interpretation of DW-MRI (Caspers & Axer, 2019). 3D-PLI 
potentially allows joint imaging of fiber tracts and neuro-
nal cell bodies (Zeineh et al., 2017) due to diffraction pat-
terns, differences in the density of birefringent material, 
and locally variable attenuation. However, this possibility 
has not yet been validated.

Cytoarchitecture can be studied in histological sec-
tions of postmortem brains with Cresyl violet. The stain-
ing provides contrast due to staining of the rough 
endoplasmic reticulum. This allows to study cell shape, 
density and distribution, which vary between brain 
regions. Due to its high spatial resolution, microscopic 
analysis of histological sections is considered the gold 
standard to verify structural parcellations (Amunts & 
Zilles, 2015). Recent advances in high-throughput scan-
ning, data processing algorithms, and computational 
capacities have enabled the creation of 3D human brain 

atlases based on cytoarchitecture, such as BigBrain 
(Amunts et al., 2013), the Allen Adult Human Brain Atlas 
(AAHA, Ding et al., 2016), and the Julich Brain probabilis-
tic atlas (Amunts et al., 2020).

Since 3D-PLI relies solely on optical properties of the 
tissue, it is label-free and can be combined with a stain-
ing of the same tissue after its measurement. Post-
staining, for example, with Cresyl violet, enables a 
complementary visualization of neuronal cell bodies, 
potentially establishing a direct link between cytoarchi-
tecture with 3D fiber-architecture. This requires, however, 
a complex histological processing, which limits the num-
ber of available samples, increases the risk of tissue 
damage and may lead to deformations of the section. To 
correct for deformation and artifacts in the images of the 
two modalities requires a nonlinear registration step. 
However, 3D-PLI and Cresyl violet stained tissue share 
only a few automatically identifiable cross-modal regis-
tration landmarks, such as blood vessels or morphologi-
cal landmarks. Therefore, post-staining of sections 
imaged with 3D-PLI is feasible but technically challeng-
ing. Since it does not scale efficiently to larger datasets, 
it is not applicable to whole-brain stacks involving thou-
sands of sections.

Therefore, we aim to train a deep neural network 
model to perform image-to-image translation from 3D-
PLI to a Cresyl violet staining. Such an approach is often 
denoted as virtual histological staining, which refers to 
computational methods that generate color-coded 
images of biological tissue without the need for tradi-
tional staining techniques (Latonen et  al., 2024). The 
methods, instead, utilize optical properties of the tissue, 
such as birefringence, autofluorescence, scattering, or 
absorption to create images that emulate the appearance 
of stained tissue. A virtual Cresyl violet staining spatially 
aligned with 3D-PLI would allow the use of established 
tools for cytoarchitectonic analysis, such as automatic 
cell instance segmentation (Upschulte et  al., 2022), 
directly on 3D-PLI data. Furthermore, identification of cell 
bodies would provide detailed registration landmarks for 
cross-modal registration (Ounkomol et al., 2018), thereby 
offering the opportunity to perform joint acquisition of 
aligned fiber and cytoarchitecture at a larger scale than 
possible today. A virtual staining could, in principle, be 
applied to the whole brain. However, white matter regions 
remain challenging due to the predominance of glial cells, 
mainly oligodendrocytes forming the myelin sheath, 
which are not distinguishable from nerve fibers in the 3D-
PLI signal. Therefore, in the present study, we focus our 
analysis on gray matter regions.

One of the earliest applications of label-free imaging 
for visual staining was Quantitative Phase Imaging (QPI, 
Curl et al., 2004). QPI measures the phase shift of light 
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passing through a sample, producing high-resolution 
images that reveal the optical properties of the tissue. It 
was used to generate images of collagen fibers, red 
blood cells, and other tissue structures without staining 
(Curl et  al., 2004; Park et  al., 2018). Later, machine-
learning algorithms, especially generative models, have 
been trained to recognize and virtually stain different tis-
sue structures in unstained images by performing image-
to-image translation. They have successfully generated 
color-coded images of tissue that replicate the appear-
ance of histological stainings, such as a virtual hematox-
ylin and eosin (H&E), Masson’s trichrome, and Jones’ 
stain from QPI of label-free tissue (Rivenson et al., 2019), 
a transformation of H&E stained tissue into Masson’s tri-
chrome, periodic acid-Schiff (PAS), or Jones’ stain (de 
Haan et  al., 2021; Yang et  al., 2022). However, these 
stains are not very good at distinguishing the different 
components of the nervous tissue.

Machine learning algorithms were also used to pre-
dict fluorescence-labeled images from transmitted-light 
z-stacks (Christiansen et  al., 2018; Cross-Zamirski 
et al., 2022; Ounkomol et al., 2018) or 3D fluorescence 
structures and a FluoroMyelin stain from bright-field and 
polarization images of brain slices (Guo et  al., 2020). 
The methods typically use cross-entropy (Christiansen 
et al., 2018), mean absolute (L1) loss (Guo et al., 2020), 
or style-related losses such as conditional generative 
adversarial network (GAN) loss (Cross-Zamirski et  al., 
2022; de Haan et al., 2021; Rivenson et al., 2019). While 
including a GAN objective encourages prediction of 
realistic-looking images, it has no clear mechanism to 
preserve content when conditioned on a particular input 
image, and thus may introduce artificial structures 
(Cohen et  al., 2018). A combination with a pixel-wise 
reconstruction loss (e.g., L1 loss) mitigates this problem 
of GAN training and improves accuracy of predictions 
(Isola et al., 2017).

Since methods using paired training data for super-
vised image-to-image translation typically produce more 
accurate predictions than unpaired methods (Latonen 
et al., 2024; Zhu et al., 2017), a pixel-accurate alignment 
of training data is desired. This requires virtual staining 
methods to either perform a costly registration step or 
directly acquire paired images. A paired acquisition with 
3D-PLI, however, is not feasible and a lack of structural 
overlap, such as a sufficient number of visible cell 
instances between the investigated modalities, makes 
pixel-accurate registration challenging. Therefore, to alle-
viate the need for perfectly paired training data, we pro-
pose a supervised learning objective performing local 
online registration of training pairs combined with a 
translational-invariant style comparison. This allows us to 
train the model on imperfectly registered image pairs with 

strong content preservation as in paired image-to-image 
translation, while enabling realistic prediction of subtle 
structures like cell bodies (Fig. 1).

The main contributions of our method are the following:

	 •	� We apply the matching of Gram matrix representa-
tions as a texture sensitive style loss for the virtual 
staining, as previously used for texture synthesis 
(Gatys et al., 2015). Since the computation of Gram 
matrices is translation invariant, it allows a direct 
comparison of image statistics between coarsely 
aligned training examples. It, therefore, improves 
the accuracy of predicted cell instances over com-
monly used GAN style loss (Gatys et al., 2015).

	 •	� An online registration head for improving registra-
tion accuracy of local image pairs after pre-
alignment of larger tissue tiles during training. We 
consider Fourier-based registration methods, which 
can be computed efficiently in real-time on modern 
GPU hardware.

	 •	� An equivariance loss to improve the accuracy of cell 
instance predictions by addressing the inherent 
agnosticism of loss computation to constant dis-
placements through online registration.

2.  MATERIALS AND METHODS

2.1.  Microscopic imaging of histological brain 
sections

We demonstrate the proposed virtual staining approach 
on a set of brain sections for which Cresyl violet staining 
has been performed after 3D-PLI measurement. The 
brain sample for this study was obtained from a healthy 
2.4-year-old adult male vervet monkey (Wake Forest-ID 
1818; Axer et al., 2020; Takemura et al., 2020) in accor-
dance with the Wake Forest Institutional Animal Care and 
Use Committee (IACUC #A11–219) and conforming the 
AVMA Guidelines for the Euthanasia of Animals. To obtain 
an undistorted volumetric reference, a T2 weighted MRI 
was acquired in-vivo 1 day prior to sacrifice. The brain 
was removed from the skull within 24 hours after flushing 
with phosphate-buffered saline and perfusion fixated 
with 4% buffered paraformaldehyde. It was stored for 
several weeks at -70°C in 20% glycerin solution for cryo-
protection, and then sliced coronally with 60 µm section 
thickness using a large-scale cryostat microtome (Poly-
cut CM 3500, Leica Microsystems, Germany). Blockface 
images of the frozen tissue block were taken with a CCD 
camera before cutting each brain section. The images 
were reconstructed into a 3D blockface volume to pro-
vide an undistorted reference for section realignment 
(Schober et al., 2015).
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2.1.1.  Image acquisition

For 3D-PLI acquisition, brain sections were scanned 
using a polarizing microscope (LMP-1, Taorad, Germany) 
with 1.3  µm resolution (Axer & Amunts, 2022; Axer, 
Graessel, et al., 2011). The focus level of the LMP-1 was 
manually adjusted to the center of the tissue for each 

section. Inside the LMP-1 microscope, sections were 

placed on a specimen stage between a rotating linear 

and a circular polarizer on top of an incoherent light 

source with a wavelength of 550  ±  5 nm. Images were 

taken by a CCD camera for nine equidistant rotation 

angles ρ of the rotating linear polarizer, covering 180° of 

Fig. 1.  The proposed virtual staining workflow. (A) Preprocessing of 3D-PLI sections that were post-stained with Cresyl 
violet. As paired training data, regions of interest (ROIs) are manually cropped (red boxes) and affine registered using large 
blood vessels as landmarks (green marker). Background pixels in train sections are masked, and retardation values are 
scaled using gamma correction for visualization purposes. (B) Training of a U-Net model using patches, extracted from 
same random locations (yellow boxes) in 3D-PLI modalities direction ϕ, retardation sinδ, transmittance IT  and the Cresyl 
violet staining. 3D-PLI patches are used as input to the model to predict a virtual Cresyl violet staining. The Cresyl violet 
patch acts as target and is rigidly aligned with the prediction during the training procedure. The alignment is performed 
by our proposed online registration head using Fourier-based correlation of pixels. A loss L is computed between aligned 
target and prediction. (C) Inference using the trained U-Net model to virtually stain unseen sections or ROIs. Inputs are 
divided into overlapping tiles, which are processed independently by the U-Net model. The predictions are then stitched 
back together to form the complete virtual staining.
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rotation. At each pixel, the measured intensity of the 
images followed a sinusoidal profile as

	
Iρ =

IT
2
(1+ sin(2ρ− 2ϕ)sinδ).

	
(1)

Using harmonic Fourier analysis, parameter maps of 
transmittance (IT ), retardation (sinδ), and fiber direction (ϕ)  
were obtained from the measurements, with an image 
size of approximately 34,000 × 44,000 pixels per section, 
revealing their fine-grained nerve fiber architecture 
(Fig. 2A–C). Each parameter map was stored in a sepa-
rate HDF5 file as uncompressed 32-bit floating-point 
single-channel image.

After 3D-PLI acquisition, brain sections were washed, 
fixed and stained for cell bodies with Cresyl violet Nissl 
staining to reveal their cellular architecture. Whole-slide flat 
scans (single-plane) were performed using a Huron Tissue-
Scope LE120 high-throughput scanner at 1  µm in-plane 
resolution (Fig. 2D). The resulting images were saved as 
RGB color images with eight bit color depth (pixel values 
ranging from 0 to 255) in uncompressed BigTIFF format.

2.1.2.  Optical effects of cell bodies on the 3D-PLI 
signal

While 3D-PLI was primarily developed to map fiber orien-
tations, cell bodies contribute to the measured signal as 

well. In the following, we summarize how absorption, dif-
fraction, birefringence and scattering effects of cells are 
represented in 3D-PLI parameter maps.

Previous work reported that larger cell bodies appear as 
dark spots in transmittance maps (Zeineh et  al., 2017), 
which encode light extinction caused by any material along 
the optical path. However, in the present transmittance 
maps, cell bodies are not distinguished by higher absorp-
tion relative to the surrounding fiber architecture (Fig. 2A). 
This is likely because their membranes remained intact 
due to the short postmortem time before tissue fixation.

Diffraction significantly impacts the 3D-PLI signal at 
the given wavelength and resolution. In cortical regions, 
diffraction can cause pixels of transmittance maps inside 
the tissue to appear brighter than the background, partic-
ularly along sharp edges such as the walls of cell bodies 
and blood vessels. The intensity of these diffraction pat-
terns on the transmittance map depends on the level of 
the focal plane of the objective lens.

Another relevant effect is observed in retardation 
maps, which encode the average amount and orientation 
of birefringent material within each tissue voxel, primarily 
collagen and myelinated nerve fibers. Since cell bodies 
contain significantly less birefringent material than sur-
rounding fibers, their presence causes local attenuation 
of the retardation appearing as dark patches between 
cortical fibers (Fig. 2B).

Fig. 2.  Data modalities and registration challenges for training section 544. (A–C) 3D-PLI parameter maps: Transmittance, 
retardation, and fiber orientation in HSV color space (hue: fiber direction; saturation/brightness: retardation). Background 
pixels are masked for visualization purposes only. (D) Affine registered Cresyl violet staining. The pial surface of the 
3D-PLI acquisition is shown as a contour plot in D for reference. Between both data acquisitions remains a nonlinear 
misalignment that cannot be resolved by a global affine transformation. At a local scale, the remaining misalignment is 
approximately linear. Yellow arrows indicate blood vessels that can be used as mutual registration landmarks for coarse 
alignment.
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Light scattering is ubiquitous in polarized light bright-
field transmission microscopy, but can generally be 
treated as random background noise. It does not appear 
to systematically affect either transmittance or retarda-
tion, with the only known exception being increased 
scattering at steep fibers running approximately perpen-
dicularly to the section plane and darkening the transmit-
tance significantly.

2.1.3.  Tissue shrinkage estimation

Deformations induced by histological processing include 
shrinkage or swelling of brain tissue. To correct these 
effects, the extent of shrinkage can be estimated from 
the ratio between the histologically processed and true 
brain volume, which can be represented by the fresh 
weight of the whole brain with an estimated mean spe-
cific density (Amunts et al., 2005, 2013) or an MRI refer-
ence (Wagstyl et al., 2020). In this work, we perform 2D 
segmentation of cell bodies in 3D-PLI parameter maps 
and measure their in-plane areas. To ensure comparabil-
ity of cell sizes across studies, we estimate 2D shrinkage 
factors using a postmortem MRI of the same brain as a 
reference.

We first estimate shrinkage in the 3D-PLI acquisition 
by affine registration of the 3D reconstructed blockface 
volume to the MRI. The linear part of the affine transfor-
mation in physical space has eigenvalues [0.984, 1.005, 
1.015], indicating a global volume change of less than 1% 
and no axis-specific systematic deviation. In a second 
step, we calculate 2D shrinkage factors for each brain 
section as the quotient between the area occupied by tis-
sue in the 3D-PLI measurement and its corresponding 
blockface image. For test section #559, we estimate a 
global 2D shrinkage factor of 0.97, indicating a slight 
swelling of the 3D-PLI measurement relative to its original 
area within the MRI. This observation is consistent across 
all sections, with 2D shrinkage factors between 0.95 and 
0.99. We correct the in-plane sizes of segmented cell 
body areas in 3D-PLI by applying the individual 2D shrink-
age factor of each section, assuming an approximately 
uniform area change of cells and surrounding tissue.

2.2.  Initial cross-modality alignment

After the subsequent processing of brain tissue, Cresyl 
violet images exhibit a deformation relative to the 3D-PLI 
acquisition. To align both modalities, an initial affine reg-
istration of whole brain sections is performed by manual 
identification of large blood vessels as landmarks visible 
in both modalities.

Performing the initial affine registration reveals 
remaining nonlinear deformations as shown in Figure 2D. 

Since nonlinear deformations typically have low spatial 
frequencies, causing smooth, large-scale distortions, we 
expected near-linear deformations at smaller scales. 
Therefore, performing an additional more local linear 
registration would lead to a better fit. We subsequently 
crop square regions of interest (ROIs) with a size of 4,096 
pixels (∼5.3 mm) and without visible artifacts, covering 
distinct cellular architectures across the whole coronal 
plane. For all ROIs we perform additional affine registra-
tion and make sure that transformed landmarks have a 
maximum distance of 70 pixels (91  µm) from their 
matches (Fig. 1A). All ROIs are warped and resampled to 
1.3 µm using linear interpolation to match the coordinate 
space of 3D-PLI. While this results in a loss of precision 
relative to the original resolution of Cresyl violet scans of 
1 µm, matching the resolutions of both modalities facili-
tates subsequent processing and analysis steps.

2.3.  Fourier-based online registration of image 
patches

To correct the remaining misalignment of 3D-PLI and 
Cresyl violet after affine registration of ROIs at a finer 
local scale, we introduce an online registration head that 
performs cross-modality alignment during training based 
on model predictions of small image patches (Fig. 1B). 
We assume that once the style transfer model has learned 
to reconstruct microscopic landmarks (e.g., individual 
cells or small blood vessels), such online registration will 
promote the learning of additional landmarks until the 
training can use pixel-aligned training examples.

The registration method performed during training 
needs to be computationally efficient, since training will 
require numerous registration iterations. Conventional 
feature-based image registration methods are accurate 
and can model nonlinear deformations but are computa-
tionally expensive and sensitive to image degradation. As 
we assume deformations to be approximately linear at a 
local scale, we take advantage of Fourier-based image cor-
relations (Tong et al., 2019), which can efficiently recover a 
translation between images in the frequency domain.

2.3.1.  Translational shift

Fourier-based image correlation methods are able to 
retrieve a translational shift Δu,Δv( ) between image func-
tions f (u,v ) and g(u,v ) defined for integer pixel coordi-
nates (u,v ), such that f (u,v ) = g u + Δu,v + Δv( ). Both 
functions f  and g represent images of equal height H and 
width W  and are for now assumed to repeat periodically 
with a periodicity of H and W , respectively.

A common approach to retrieve the translational shift 
between f  and g is to use circular cross-correlation  
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(Tong et al., 2019), which can be efficiently computed in 
the frequency domain as

	

CC°[a,b] = (f ! g)[a,b]

=
u,v
∑f (u − a,v − b)g(u,v )

= F −1 F {f }F {g}{ }( )[a,b], 	

(2)

for all integer shifts [a,b], where F  denotes the Fourier 
transformation, F −1 its inverse, F {f } its complex-
conjugate Fourier coefficients, and where we sum over all 
pixel coordinates (u,v ). The translational shift can subse-
quently be recovered by the location of the maximum 
value in CC° as

	
(Δu,Δv ) = argmax

a,b( )
CC°[a,b].

	
(3)

Eq. (2) can be extended to the mean over squared dis-
tances between pixel values as

MSE°[a,b] = 1
HW u,v

∑(f (u − a,v − b) − g(u,v ))2

=
−2(f ! g)[a,b]+

u,v∑ (f 2(u,v ) + g2(u,v ))

HW
.	

(4)

The translational shift Δu,Δv( ) can be recovered ana-
log to Eq. (3) by computing the argmin. For periodic 
image functions f  and g, solutions of CC° and MSE° are 
identical as the sum over squared functions f 2 and g2[0,1] 
is constant (Fienup, 1997).

Since histological images are not periodic, zero pad-
ding is applied to fill both images up to a shape of 
(Hf + Hg −1,Wf +Wg −1), in order to break periodicity and 
allow processing of images with different heights Hf , Hg 
and widths Wf , Wg. The zero-padded images are  
denoted by new image functions f0 and g0. Furthermore, 
additional masks Mf  and Mg are introduced, which have 
a value of one at all pixel coordinates within original 
height and width and zero elsewhere. We reformulate  
Eq. (4) to a non-circular form as

MSE a,b[ ] =
f0
2 !Mg( )− 2 f0 ! g0( )+ Mf ! g0

2( )
Mf !Mg

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
a,b[ ],

	
(5)

which can be efficiently computed by multiple applica-
tions of Eq. (2). Here, the cross-correlations of f0

2 and g0
2 

with masks Mg  and Mf, respectively, ensure that pixel 
values of the original unpadded images are not compared 
with zero padding values. Furthermore, the score is 
divided by the correlation between Mf

 and Mg
 to account 

for the number of overlapping pixels between original 

unpadded images. We apply the same division by Mf *Mg 
also for CC° to retrieve a non-circular variant called CC. 
While the solutions for circular CC° and MSE° are identi-
cal, the solutions for non-circular CC and MSE differ, 
resulting in distinct registration metrics.

2.3.2.  Rotation and scale

While relative scale and rotation between images can 
also be retrieved in the frequency domain (Reddy & 
Chatterji, 1996; Sheng, 1989), we expect only small rela-
tive rotation angles and minor scale variations due to the 
initial affine registration by matching blood vessels. 
Therefore, we leverage the parallel processing capability 
of GPUs to perform an exhaustive search over a fixed set 
of rotation angles without scaling adjustments. We calcu-
late registration metrics for every translational shift and 
rotation and select the rotation angle and shift combina-
tion that yields a global optimum.

2.4.  Conditional generation of Cresyl violet staining

Image-to-image translation refers to the process of gen-
erating images using a generator model G conditioned 
on an input image x. Predictions G x( ) of the model are 
compared with actual target images y. In our case, we 
translate from the domain of 3D-PLI images to Cresyl vio-
let. The translation is performed by a U-Net (Ronneberger 
et al., 2015) serving as the generator model, which forms 
the core of our image-to-image translation framework, as 
illustrated in Figure 3. The three loss components used to 
train the U-Net are described below.

2.4.1.  Reconstruction loss

Similar to Isola et al. (2017), we use an L1 loss between 
target y and prediction G x( ) to encourage pixel corre-
spondence in the reconstruction loss

	
LR = E x,y ||R

y,G x( ) y( )−G x( ) ||1⎡
⎣

⎤
⎦, 	

(6)

where R
y,G x( ) performs the proposed online registration to 

spatially align y and G x( ) before loss calculation. This 
enables utilization of imperfectly aligned training data to 
penalize any discrepancies in corresponding pixel values 
between G x( ) and y. To disable online registration, R

y,G x( ) 
can be replaced by the identity function.

2.4.2.  Style loss

We consider two alternative implementations of a style 
loss LS, both focussing on style preservation. We refer to 
the first one as Gram loss, and the second as GAN loss.
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For the Gram loss, we apply a texture-sensitive style 
loss proposed by Gatys et al. (2015) based on squared 
distances between Gram matrix representations of neural 
network features. Given a pre-trained VGG encoder 
(Simonyan & Zisserman, 2015), Gram matrix representa-
tions are computed from feature activations of its layers 
to characterize the texture of images at different com-
plexities. For each layer l, the encoder produces a differ-
ent number of Nl feature maps, each storing Kl spatial 
entries (i.e., height × width). Elements of the Gram matrix 
Γ ij

l  at layer l are computed as the inner product between 
the i-th and j-th feature map Fi

l and Fj
l, where each map 

is flattened to a Kl-dimensional vector:

	
Γ ij

l =
k=1

Kl

∑Fik
l Fjk

l .
	

(7)

Since the Gram matrix computation captures global 
feature correlations rather than spatial locations, this 
allows a translation-invariant comparison of image statis-
tics. The style loss is computed over all L layers of the 
VGG encoder, using Gram matrix representations Γ l for 
the online registered target and Γ!

l
 for the prediction:

	

LS = E x,y
l=1

L

∑ 1
Kl

2Nl
2

i=1

Nl

∑
j=1

Nl

∑ Γ ij
l − Γ! ij

l( )2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

	

(8)

For the GAN loss, we consider adversarial training 
(Goodfellow et al., 2014) to compare with previous work 
in virtual staining (Cross-Zamirski et al., 2022; Rivenson 
et al., 2019). We implement the GAN loss in the form of a 
Wasserstein GAN (Arjovsky et  al., 2017). In contrast to 
conditional GAN training (Isola et  al., 2017; Mirza & 
Osindero, 2014), we do not condition the discriminator 
on input images x, as this would cause the model to 
reproduce any misalignment in the training data.

2.4.3.  Equivariance loss

By registering target y to generator prediction G x( ) 
before loss calculation, displacements of objects in G x( ) 
relative to x are not captured by LR. To prevent pixel shifts 
in G x( ), we enforce equivariance with respect to rota-
tions through the equivariance loss

	 LE = E x Ω G x( )( )−G Ω x( )( )
2

⎡
⎣

⎤
⎦, 	 (9)

where operator Ω represents an image rotation of 180°. 
Minimizing Eq. (9) ensures that pixels in G x( ) correspond 
to pixels at the same pixel coordinates in x as any dis-
crepancy would cause a mismatch of Ω G x( )( ) and 
G Ω x( )( ).

Fig. 3.  Illustration of the proposed virtual staining approach. Patches of 3D-PLI parameter maps transmittance IT , 
retardation sinδ (scaled using gamma correction for visualization), and direction ϕ are used as input to a 2D convolutional 
U-Net model as generator to predict a virtual Cresyl violet staining. An online registration head estimates a rigid 
transformation R between a coarsely aligned Cresyl violet target patch and the prediction via Fourier-based registration. 
Transformation R is used to align target and prediction at the patch level. We calculate three distinct loss components: 
LR, LS  and LE. Reconstruction loss LR  performs a pixel-wise comparison between prediction and aligned target. Style 
loss LS compares feature maps of a VGG network encoder using Gram matrices to mimic the style of the target image. 
Equivariance loss LE  applies the same U-Net model a second time to a rotated version of the input by rotation Ω. The 
output is compared with the prediction rotated by same rotation Ω, which promotes stability and avoids learning a 
constant shift of pixels in the prediction.
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2.4.4.  Total loss formulation

All components are aggregated into the total loss

	
L = λLR + 1− λ( )LS + ηLE , 	 (10)

with relative weightings λ ∈ 0,1[ ] and η ≥ 0 as hyperpa-
rameters. We denote models that use Gram loss as the 
style loss LS  as Gram, and models that use GAN loss as 
the style loss LS  as GAN. When online registration is 
enabled during computation of reconstruction loss LR, 
the corresponding models are denoted as Gram+Reg 
and GAN+Reg. Base models Gram and GAN compute 
the reconstruction loss with online registration disabled.

2.5.  Model training

For the generator G, we use the same 5-layer U-Net 
(Ronneberger et al., 2015) with numbers of features [32, 
64, 128, 256, 512] in all experiments, and adjust the input 
and output channels to 3 according to our setup. To train 
G, we use square 3D-PLI patches of 444 pixels size, rep-
resented by parameter maps transmittance (IT ), retarda-
tion (sinδ) and direction (ϕ). We reformulate the 3D-PLI 
parameters as triplets (IT , sin(δ) cos(2ϕ), sin(δ) sin(2ϕ)) to 
resolve the circular behavior of direction ϕ, standardize 
the channels and stack them to the input of generator G. 
Due to the fully convolutional approach of the U-Net 
model without padding, the generated output predictions 
have a reduced size of 260 pixels. Unless specified oth-
erwise, we use a patch size of 360 pixels for the target 
Cresyl violet images, centered at the input patch position. 
They are chosen to be larger than the model predictions 
to allow the online registration to correct translational 
shifts of up to 50 pixels in any direction, while keeping the 
predictions fully contained within the target images. We 
normalize image pixel values of the Cresyl violet staining 
to the range of [0, 1].

For computing style loss LS, we extract features from 
a VGG19 model (Simonyan & Zisserman, 2015) to com-
pute the Gram loss. The VGG feature encoder network 
has a depth of four layers and three input channels with 
pre-trained weights on ImageNet (Deng et al., 2009). We 
multiply the style loss LS by a constant factor of 104 to 
bring it to the same order of magnitude as reconstruction 
loss LR . For the training, we use Adam optimizer (Kingma 
& Ba, 2017) with β1 = 0.9, β2 = 0.999 and a learning rate 
of 10-3. If not stated otherwise, we use η = 0.1 and λ = 0.5 
as default in the training objective in Eq. (10).

In the case of GAN style loss LS, we use a 4-layer 
convolutional network as discriminator with kernel size 4, 
stride 2, padding 1, and feature size of [32, 64, 128, 256], 
followed by batch normalization (Ioffe & Szegedy, 2015) 

and Leaky ReLU after each convolution. For training, we 
use the Wasserstein GAN (Arjovsky et al., 2017) objective 
and a separate Adam optimizer for the discriminator and 
the generator, using β1 = 0.5, β2 = 0.999 and a learning 
rate of 10-4. We perform five updates for the discriminator 
for one update of the generator and clamp discriminator 
weights at 0.03 after each step.

2.5.1.  Training data

For model training and evaluation, we use eight coronal 
sections at the level of the central sulcus. Seven sections 
are used for training and one section is kept for testing 
with a gap of 0.6  mm between train and test sections 
(Fig.  4A). From the training sections, 27 affine-aligned 
ROIs are extracted (Fig. 4B), where one ROI is held out 
for validation to identify possible overfitting. For each 
ROI, we extract joint target Cresyl violet images and 3D-
PLI modalities at the same center location. To maximize 
the diversity of the training examples, we do not pre-
compute training patches but sample them randomly 
during the training process. We use a batch size of 128 
and draw 32,768 paired random patches per epoch 
evenly distributed across the training ROIs, resulting in 
approximately 1,260 random samples per ROI per epoch. 
All training is performed for 150 epochs or until model 
convergence if validation loss did not decrease for at 
least 50 epochs.

2.5.2.  Data augmentation

To enhance the robustness of our trained models we 
employ 3D-PLI-specific data augmentations, which were 
carefully modified to keep physically plausible signal 
parameters (Oberstrass et al., 2024). Specifically, we per-
form random rotation by angles between -180° and 180° 
with mirror padding and horizontal and vertical random 
flipping. In both cases, direction parameter maps ϕ are 
corrected accordingly. Additionally, we perform Gaussian 
blurring of 3D-PLI parameter maps for random standard 
deviations up to σ = 1.5 and kernel sizes of 3 or 5. We 
scale thickness and attenuation coefficients for 3D-PLI 
parameter maps by random values between 0.5 and 2.

2.5.3.  Implementation

All models were trained on the supercomputer JURE-
CA-DC at the Jülich Supercomputing Centre (JSC, 
Thörnig, 2021) on a single node by splitting each batch 
equally onto 4 NVIDIA A100 GPUs using distributed data-
parallel strategy. For data pre-processing 128 worker 
processes were spawned on 128 CPU cores. For refer-
ence, training for 100 epochs took 8  hours with online 
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registration and 4  hours without on this hardware. The 
implementations are based on the Quicksetup-ai tem-
plate by the HelmholtzAI Consultants Munich,1 using the 
frameworks: PyTorch (Paszke et  al., 2019), PyTorch 
Lightning (Borovec et al., 2022) and Hydra (Yadan, 2019).

2.5.4.  Online registration

For the online registration head, we restrict accepted 
solutions of Eq. (5) to translation  +  rotation pairs that 
cause the registered target to have full overlap with the 

1  https://github​.com​/HelmholtzAI​-Consultants​-Munich​/Quicksetup​-ai

Fig. 4.  Localization of train and test data. (A) Seven 
sections used for training (blue stripes) and one section 
used for testing (red stripe) were taken at the level of the 
central sulcus (CS; yellow dashed lines). Locations are 
shown on top of the 3D reconstructed blockface of the 
brain for reference. Train and test data are 0.6 mm apart 
from each other. (B) Selected locations of train and test 
regions of interest (ROIs), which are used for training and 
testing the models. The images show ROIs from each 
of the train and test sections on top of globally affine 
registered Cresyl violet images. Black contour plots outline 
the pial surface of corresponding 3D-PLI sections for 
reference.

prediction, avoiding loss calculation over zero-padded 
values. We check the translation correction for 31 rotation 
angles from -7.5° to 7.5° with steps of 0.5° and take the 
translation + rotation pair with the best registration score.

3.  EXPERIMENTS AND RESULTS

We compare a selection of performance scores to iden-
tify optimal hyperparameters of the proposed method 
and assess the overall potential of the best performing 
model. The main hyperparameters are the choice of the 
online registration metric, the type of style loss LS, its 
relative weighting λ to reconstruction loss LR, and 
whether to use the additional equivariance loss LE . To 
reduce the massive computational demands by a rigor-
ous grid search across all hyperparameters, we choose 
to identify a suitable choice for the online registration 
metric and model variants using different loss compo-
nents independently before determining an optimal rela-
tive weighting λ.

3.1.  Experiment setup

3.1.1.  Test data

We manually select four ROIs for model evaluation, 
ensuring a diverse representation of different cytoarchi-
tectonic characteristics from the held-out test section 
(Fig. 4B). The ROIs contain primary motor cortex 4a, tem-
poral cortical area TE, the hippocampal cornu Ammonis 
(CA) region, and parts of the putamen and globus palli-
dus (Pars interna and Pars externa) as subcortical struc-
tures (Fig. 5).

As the computation of image metrics requires a pre-
cise alignment of test data, we perform elastic registra-
tion of test ROIs based on landmarks and image intensity 
using the bUnwarpJ (Arganda-Carreras et al., 2006) algo-
rithm. We use predictions of an independently trained 
Gram+Reg model as target. The predictions are used to 
manually identify 15–25 characteristic cell clusters as 
landmarks per ROI, which are confirmed by the location 
and arrangement of faint shadows of cells visible in the 
3D-PLI transmittance. For registration, we use an image 
weight of 1.0, a landmark weight of 10.0, and a consis-
tency weight of 10.0. The strong weights for landmarks 
and consistency are chosen to prevent the transforma-
tion field from overly conforming to the predictions and to 
overcome local optima.

3.1.2.  Evaluation scores

We evaluate the impact of different model parameter 
choices on the quality of the predicted virtual staining by 

https://github.com/HelmholtzAI-Consultants-Munich/Quicksetup-ai
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Fig. 5.  Overview of ROIs used for the evaluation, which represent distinct cellular architectures. They were extracted 
from section 559, located 0.6 mm apart from the training sections. Embedded windows show magnified details inside 
each ROI. Columns each show one of the four test ROIs taken from the anterior subdivision of the primary motor cortex 
(4a), the hippocampal cornu Ammonis (CA) region, temporal cortical area TE, and parts of the putamen and globus 
pallidus (GP; a: GP Pars interna; b: GP Pars externa) as subcortical nuclei. The first three rows demonstrate 3D-PLI 
modalities transmittance, retardation (scaled using gamma correction for visualization) and fiber orientation in HSV color 
space (hue: fiber direction; saturation/brightness: retardation). The 3D-PLI modalities are compared to the registered target 
Cresyl violet and predicted virtual staining.
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applying structural similarity index measure (SSIM, Wang 
et  al., 2004), mutual information (MI), and root-mean-
square error (RMSE). For each metric, we report the mean 
over all test ROIs. To evaluate how well cell positions are 
preserved by different models, we compute F1 scores 
based on cell instance segmentations by a contour pro-
posal network (CPN, Upschulte et al., 2022, 2023). Pre-
dicted cell instances are obtained from segmentations of 
the virtual staining and compared to target cell instances 
from the corresponding Cresyl violet images. For each 
ROI, predicted and target cells are matched by calculat-
ing their intersection over union (IoU), requiring a mini-
mum IoU of 30% for a match. Each target cell can be a 
match for at most one predicted cell. Matched instances 
are counted as true positives, unmatched predicted cells 
as false positives, and unmatched target cells as false 
negatives. F1 scores are then computed from aggregated 
counts across all ROIs. For the cell detection model, we 
fine-tuned a pre-trained CPN2 for cell body segmentation 
in cell-stained microscopy images using the celldetec-
tion3 Python package. Fine-tuning was performed on a 
diverse mix of manually annotated images, as well as 
synthetic data.

We restrict the computation of evaluation metrics to 
gray matter, where most of the neuronal cell bodies are 
located, excluding white matter and background pixels. 
In test ROIs showing cortical regions, we further exclude 
molecular layer I as it consists of only a few individual 
neurons and exhibits a nonlinear deformation due to tis-
sue shrinkage, which could not be reliably corrected in 
the registration. For the ROI showing the hippocampus, 
we exclude the fascia dentata, as its granular layer con-
sists of very densely packed neurons, which cannot reli-
ably be distinguished and restrict the analysis to 
hippocampal CA1-CA4 regions.

3.2.  Online registration metric

To compute a pixel-aligned reconstruction loss we apply 
the online registration head (Section  2.3). We consider 
correlation-based registration metrics CC and MSE with 
phase correlation (PC, Kuglin, 1975) and blur-invariant 
phase correlation (BIPC, Ojansivu & Heikkila, 2007). We 
apply a Hann window to PC and BIPC before their calcu-
lation to mitigate their bias towards the sharp image 
edges (Gonzales & Woods, 2008).

To understand how image degradation effects can 
influence the success of the online registration head, we 
compare the robustness of the metrics against noise and 
blur. A square target image with 460 pixels size is 

2  ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c
3  https://github​.com​/FZJ​-INM1​-BDA​/celldetection

extracted from a random location in the Cresyl violet 
staining. Next, a smaller moving tile with a size of 260 
pixels is extracted from a random location within the tar-
get and distorted by gradually increasing noise or blur on 
the image. We add noise from a zero-centered Gaussian 
distribution with standard deviation σ increasing from 0 
to 25 and Gaussian blur with increasing kernel sizes with 
standard deviations σ growing from 0 to 50. The registra-
tion head is applied with each metric to realign the 
degraded moving tile with its location in the target image. 
We compare the hit rate over 100 examples per degrada-
tion step. The registration is considered successful if the 
determined translational displacement remains within 5 
pixels of the actual displacement.

Figure  6 shows that as blur increases, BIPC with a 
Hann window achieves the best performance. This result 
is expected, as the metric remains invariant to blur. We 
also observe that CC and MSE perform best in mitigating 
the effects of noise, while the other metrics fail already 
with a minor amount of noise. Overall, MSE provides a 
balanced tradeoff between blur and noise response.

To make an optimal choice of a registration metric for 
online registration, we train Gram+Reg models with CC, 
BIPC, PC, and MSE compared to a Gram model without 
online registration. We use a Cresyl violet target patch 
size of 360 pixels and predictions of 260 pixels, centered 
within the target patch. This allows the online registration 
to correct for a maximum of 50 pixels translation in each 
dimension. For Gram+Reg models trained with CC, BIPC 
and the Gram model, λ = 0.1 was chosen as it improved 
results compared to λ = 0.5 for PC and MSE.

Table 1 shows a quantitative comparison of the mod-
els. Independent of the metric, the best results are 
observed when using Gram+Reg with online registration 
Among all metrics considered, the model with MSE per-
forms best.

3.3.  Performance analysis of different model 
variants

To justify including equivariance loss LE (Eq. (9)) in the 
total loss, Figure 7 illustrates the effect of training differ-
ent models with this loss component enabled and dis-
abled. With LE  disabled (η  =  0), cell instances in the 
model predictions exhibit a relative displacement. 
Enabling LE (η  =  0.1) improves the overlap of cell 
instances with the original Cresyl violet staining.

To quantify the impact of the loss component LE  on 
the predictions, we compare the models with LE  enabled 
and disabled in Table  2. We consider Gram and 
Gram+Reg, as well as GAN and GAN+Reg as model vari-
ants. All models use λ = 0.5 expect for the Gram model 
without online registration, where λ = 0.1 showed better 

https://github.com/FZJ-INM1-BDA/celldetection
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performance. Since displacements of cell instances in 
the model predictions occur randomly with varying 
strength, we report mean and standard errors across four 
independent trainings. Models trained with LE  enabled 
show the highest correspondence with the target stain-
ing. Without online registration, the advantage of includ-
ing LE  becomes negligible. Furthermore, results in Table 2 
demonstrate that Gram models outperform their 
corresponding GAN models in all evaluation metrics. 
Regardless of the variant used for style loss LS , all mod-
els benefit from the online registration. We present aver-
aged scores across all test ROIs. Individual scores per 
ROI, are provided in Appendix Table A1 as additional 
information.

A comparison of model predictions is shown in  
Figure  8C for the whole cortical depth of an Isocortex 
sample from temporal cortical area TE. GAN+Reg and 
Gram+Reg provide the most realistic-looking reconstruc-
tions in terms of relative size and shape of cell bodies, 
along with the differences between layers concerning cell 
packing density. While Gram+Reg seems to be influ-
enced by technically-related inhomogeneities in staining 

intensity, GAN+Reg produces a clearer contrast between 
stained cells and surrounding tissue. Gram+Reg detects 
the transition from the cortex to white matter better than 
GAN+Reg. Both methods introduce an artificial arrange-
ment of cells into cortical columns not present in the orig-
inal Cresyl violet staining.

To further analyze the ability of the methods to recon-
struct the laminar cell organization, we compute grey 
level index (GLI) values (Zilles et  al., 1978). GLI values 
provide an established proxy for volume density of 
stained cell bodies in gray matter regions and are used to 
characterize the laminar architecture of cortical areas 
(Schleicher et al., 2000). To compute GLI values, adaptive 
thresholding is applied to create a mask of pixels occu-
pied by cell bodies for each image. The masks are subse-
quently down scaled by a factor of 16 to a spatial 
resolution of 20.8 µm, with each value representing the 
fraction of segmented pixels. Resulting GLI images, 
cropped to the area between pial surface and the cortex/
white matter transition, are displayed for the Cresyl violet 
target and the predictions in Figure 8D.

For each of the GLI images, 31 intensity profiles verti-
cally oriented to the cortical layers are extracted to repre-
sent the columnar distribution of GLI values. The profiles 
are restricted to layers II - VI since staining inhomogene-
ities make GLI values for layer I unreliable. To obtain one 
representative profile for each image, the profiles are 
averaged and smoothed using a mean filter with kernel 
size 3 to improve the signal-to-noise ratio. The average 
profiles are shown on top of each GLI image in Figure 8D.

The average GLI profile for the GAN model shows no 
clear distinction between cortical layers II-IV and misses 
a peak for layer IV. The profile by Gram replicates peaks 
for layers II and IV but does not provide a clear represen-
tation of the cortical layers. GAN+Reg and Gram+Reg 
both replicate peaks for the higher cell densities in layers 
II, IV and VI. Gram+Reg shows the clearest distinction 

Fig. 6.  Robustness of different online registration metrics against synthetic image distortions. We report the proportion 
of correct rigid alignments for different blur (A) and noise (B) levels by registration metrics MSE, CC, PC, and BIPC. The 
registration is considered successful (a hit) if the translational displacement obtained remains within 5 pixels of the actual 
displacement.

Table 1.  Performance of models trained with different 
online registration metrics in terms of similarity of generated 
images with ground truth.

Method Metric MI ↑ RMSE ↓ SSIM ↑ F1 ↑

Gram - 0.126 33.6 0.354 30.2
Gram+Reg CC 0.136 33.0 0.379 34.4

BIPC 0.149 31.5 0.371 32.6
PC 0.185 31.9 0.415 38.0

MSE 0.226 29.8 0.444 41.3

We compare cross-correlation (CC), phase-correlation (PC), blur-
invariant phase-correlation (BIPC), and mean-squared error (MSE) 
as online registration metrics against using no online registration 
(-). Arrows indicate the direction of better performance (↑ higher is 
better, ↓ lower is better). Best scores per column in bold.
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Fig. 7.  Example image illustrating how equivariance loss LE improves cell instance overlap of Gram+Reg and GAN+Reg 
models. (A) 3D-PLI input as transmittance, retardation (scaled using gamma correction) and fiber orientation map in HSV 
color space (hue: fiber direction; saturation/brightness: retardation). (B) Registered target Cresyl violet staining, a cell 
segmentation by a CPN model, and the identified target cell instances. (C) Predicted virtual staining of models trained 
with equivariance loss LE  enabled (✓) or disabled (✗). Predicted cell instances (red) by each model are overlaid with the 
target cells (gray) and F1 scores computed for cells in this specific image patch. Since the displacement occurs randomly, 
a patch from our test set and random seeds for the models were manually selected that illustrate that effect. The patch 
shows the pyramidal layer of the hippocampal CA1 region.

Table 2.  Effect of the proposed online registration on models trained with different choices of style loss LS.

LS Reg. LE MI ↑ RMSE ↓ SSIM ↑ F1 ↑

Gram ✓ ✓ 0.224 ± 0.002 29.6 ± 0.4 0.445 ± 0.002 41.0 ± 0.4
✗ 0.211 ± 0.004 30.2 ± 0.4 0.432 ± 0.004 35.2 ± 1.2

✗ ✓ 0.111 ± 0.012 33.6 ±  0.8 0.314 ± 0.023 22.6 ± 4.8
✗ 0.107 ± 0.007 34.2 ±  0.3 0.304 ± 0.015 22.5 ± 3.1

GAN ✓ ✓ 0.160 ± 0.008 30.5 ± 0.5 0.389 ± 0.012 34.7 ± 1.6
✗ 0.126 ± 0.008 33.0 ± 0.4 0.347 ± 0.010 28.0 ± 1.3

✗ ✓ 0.085 ± 0.008 38.1 ± 0.5 0.249 ± 0.001 12.9 ± 0.3
✗ 0.096 ± 0.008 38.8 ± 1.7 0.253 ± 0.005 13.9 ± 1.5

Each variant is trained with online registration head (Reg.) and equivariance loss (LE ) enabled or disabled. MSE metric is used for online 
registration and η = 0.1 for weighting of LE. The deviation is reported as standard error over four independent trainings with different 
random seeds. Arrows indicate the direction of better performance (↑ higher is better, ↓ lower is better). Best scores per column in bold.

between layers and even replicates slightly nuanced 
peaks of the profile within layers.

3.4.  Effect of loss weighting parameters

To incorporate equivariance loss LE  into previous models, 
we set its weighting parameter to η = 0.1. To validate this 
choice, we perform training of Gram+Reg models with η 
values ranging from 0 to 10. Results in Table 3 indicate that 
performance is robust for η > 0. Only when the equivari-
ance loss is entirely removed from training (setting η = 0), 

we observe a measurable negative effect on the results. 
We report mean values and standard errors over four inde-
pendent trainings to show the significance of this effect.

To identify an optimal weighting λ of the style loss in 
Eq. (10), we train Gram+Reg models with different values 
for λ and MSE online registration metric. A quantitative 
evaluation of the trained models in Table  4 shows that 
larger values for λ up to λ = 0.75 achieve the best evalu-
ation scores. This indicates that the reconstruction loss 
should be given a stronger weight but should not be used 
exclusively (λ = 1).
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A visual comparison of predictions of Gram+Reg 
models trained with different choices for λ is shown in 
Figure 9 for selected crops from the test data. By using 
LR only (i.e., λ = 1), the model is unable to reconstruct 
details from the Cresyl violet staining. It is only able to 
locate strongly pronounced structures such as the gran-
ular layer delineated in (ii). Independent of the style loss 
weighting, the models do not resolve individual cell 
instances present within the granular layer. Instead, they 

capture the overall cell density, represented by a contin-
uous dark purple color. By increasing emphasis on LS 
(i.e., with decreasing values for λ), the generator is able 
to reconstruct details such as neuronal cell bodies in 
less dense regions in (i)-(iv) and blood vessels in (i). It is 
also able to generate Glial cells to match the appear-
ance of white matter in (i) and (iii). However, generators 
trained with an overweighting of style loss also tend to 
miss some strongly pronounced structures in the 

Fig. 8.  Comparison of virtual stainings for a patch of temporal area TE. (A) 3D-PLI input visualized as fiber orientation in 
HSV color space (hue: fiber direction; saturation/brightness: retardation) and transmittance. (B) Registered target Cresyl 
violet staining for reference with annotations of cortical layers I–VI and white matter (wm). (C) Predicted virtual stainings 
of GAN and Gram models and extended variants using MSE online registration (GAN+Reg, Gram+Reg). (D) GLI images 
ranging from the pial surface to the cortex/white matter transition and average profiles (red lines) for layers II–VI.
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Table 4.  Different values for weighting parameter λ show 
that a balance between style loss LS  and reconstruction 
loss LR is required in the training of a Gram+Reg model.

Method λ MI ↑ RMSE ↓ SSIM ↑ F1 ↑

Gram+Reg 0 0.124 33.8 0.340 28.6
0.03 0.162 31.9 0.394 36.1
0.25 0.210 30.7 0.436 39.8
0.5 0.226 29.8 0.444 41.3
0.75 0.238 29.8 0.448 41.4
0.97 0.230 30.7 0.446 40.2
1.0 0.090 38.0 0.347 0

Setting λ = 0 means only LS is used. Setting λ = 1 means only LR is 
used. Arrows indicate the direction of better performance (↑ higher 
is better, ↓ lower is better). Best scores per column in bold.

predictions, such as the blood vessels shown in (i) or  
the Betz cells in (iv).

3.5.  Influencing factors on model predictions

To assess the reliability of our method under varying bio-
logical and imaging conditions, we analyze in how far the 
reconstruction of cell instances depends on cell size and 
local strength of birefringence. We also examine how dif-
ferent focus levels of the LMP-1 impair the quality of the 
virtual staining.

Larger cells are expected to be more pronounced in 
3D-PLI parameter maps compared to smaller cells that 
may be overshadowed by other tissue components such 
as nerve fibers. To quantify the reliability of predicted 
cells in the virtual staining in relation to their size, we 
compute F1 scores for multiple bins of 2D in-plane cell 
sizes. Obtaining F1 scores for each bin requires compu-
tation of true and false positives, as well as false nega-
tives through matching of predicted and target cells with 
a minimum IoU threshold of 0.3. We modify the computa-
tion of true and false positives by matching only predicted 
cells within that range with all cells in the target image. To 
count false negatives, target cells within that range are 
matched with all cells in the prediction. Results in Fig-

ure 10A show that reconstruction of smaller cells < 50 µm² 
has much lower F1 scores, below 20.0, throughout all 
methods. With increasing 2D cell size, they can be iden-
tified more accurately. The Gram+Reg model shows 
highest F1 scores across all cell sizes and smallest varia-
tion between four independently trained models, mea-
sured as standard deviation.

Birefringent tissue, such as myelinated nerve fibers, 
can obscure signals from other components in 3D-PLI. 
To examine whether this effect impacts the prediction of 
cell instances in the virtual staining, we use retardation 
maps as a measure of birefringence strength. The maps 
are smoothed with a 10 pixels square median kernel to 
reduce local variance and obtain values representative of 
the surrounding tissue area. For each cell instance seg-
mented by the CPN model in the virtual staining, we sam-
ple a retardation value at its center location. Values are 
grouped into intervals from 0.0 to 0.3 in steps of 0.05. 
Since we focus the analysis on gray matter, larger retar-
dation values do not occur. As shown in Figure 10B, the 
ability of all models to reconstruct cell instances 
decreases significantly for cells dominated by stronger 
retardation signals. For Gram+Reg this effect is minimal, 
performing overall best.

We observe that the virtual staining intensities are not 
always homogenous within generated images. Such 
effects can especially be observed as cloud-like patterns 
in Figure 5 for the predicted virtual staining of ROIs show-
ing the primary motor cortex and subcortical nuclei. These 
variations coincide with variations in the diffraction pat-
tern of the associated transmittance maps, which in turn 
can be influenced by the focus level of the LMP-1 micro-
scope. To better quantify this relationship, we apply a 
Gram+Reg model to predict virtual stainings from an 
example image showing the vervet entorhinal cortex, cap-
tured at three focus levels: centered on the tissue (+0 µm), 
-30 µm and +30 µm. Results are summarized in Figure 11. 
We observe the highest consistency in staining intensity 
at the lowest focus level of (-30 µm). Higher focus levels 
introduce an increasing amount of staining artifacts.

Table 3.  Ablation study on weighting parameter η of equivariance loss LE for a Gram+Reg model.

Method η MI ↑ RMSE ↓ SSIM ↑ F1 ↑

Gram+Reg 0.0 0.211 ± 0.004 30.2 ± 0.4 0.432 ± 0.004 35.2 ± 1.2
0.01 0.225 ± 0.002 29.5 ± 0.3 0.446 ± 0.001 41.6 ± 0.2
0.1 0.224 ± 0.003 29.6 ± 0.6 0.445 ± 0.003 41.0 ± 0.4
1.0 0.220 ± 0.001 29.4 ± 0.1 0.445 ± 0.001 41.4 ± 0.2

10.0 0.224 ± 0.002 29.4 ± 0.3 0.446 ± 0.001 41.2 ± 0.2

Performance is robust across a wide range of η > 0 values. Only when the loss term is completely removed (η = 0), we observe a 
measurable degradation in performance. The deviation is reported as standard error over four independent trainings with different random 
seeds. Arrows indicate the direction of better performance (↑ higher is better, ↓ lower is better). Best scores per column in bold.
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4.  DISCUSSION

Our ablation experiments in Sections  3.2, 3.3 and 3.4 
support the design decisions of the proposed virtual 
staining method. In Section 3.5, we investigated several 
influencing factors on the predictions. In the following, 

we want to discuss the design decisions of the proposed 

virtual staining method and assess its reliability for down-

stream analysis.

We introduced an online registration head capable of 

approximating smooth nonlinear deformations, given 

Fig. 9.  Predicted virtual Cresyl violet stainings for different weightings between reconstruction and style loss 
components. (A) 3D-PLI inputs as transmittance, retardation and fiber orientation in HSV color space (hue: fiber 
direction; saturation/brightness: retardation). The retardation has been scaled using gamma correction for visualization. 
(B) Registered target Cresyl violet staining. (C) Predicted virtual stainings of models trained with different weightings λ 
between reconstruction loss LR and style loss LS. Setting λ = 0 focuses on LS and setting λ = 1 on LR exclusively. Gram 
loss is used for LS. Within each row, yellow markers indicate the same structures across all columns. (i) Temporal area  
TE and underlying white matter with arrowheads highlighting blood vessels within white matter and cortical layer VI.  
(ii) Dentate gyrus of the hippocampus with a dashed line delineating the proximal end of the granular layer of the fascia 
dentata (FD). (iii) Pyramidal layer of the cornu Ammonis (CA1) region of the hippocampus highlighted by dashed lines.  
(iv) Layer V of the primary motor cortex with arrowheads highlighting two Betz cells.

Fig. 10.  Reliability of predicted cell instances increases with their size and decreases with a stronger retardation. We 
report F1 scores between detected cell instances by a CPN model in the predicted and target stainings. F1 scores are 
computed for intervals of (A) the segmented in-plane cell body area and (B) smoothed retardation maps. Retardation 
values are sampled at each cell location. Each bar represents the average over four independently trained models. Error 
bars show standard deviation.
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Fig. 11.  Virtual staining quality varies with the focus level of the LMP-1 microscope, which influences the captured 
diffraction patterns. Example images show the vervet entorhinal cortex with zoom-ins to the architecture of cortical layers 
II-III. 3D-PLI inputs are represented as transmittance, retardation (scaled with gamma correction) and fiber orientation in 
HSV color space (hue: fiber direction; saturation/brightness: retardation). The same Gram+Reg model is used to predict 
virtual stainings from a focus level adjusted to the tissue center (+0 µm) and 30 µm above and below.
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sufficiently small patch sizes for training. Its accuracy is 
inherently influenced by the choice of the registration 
metric. We identified MSE in the Fourier domain through 
multiple applications of cross-correlation as superior to 
other typically used metrics in Fourier-based image reg-
istration, including PC. This is a notable observation, as 
PC is a popular choice due to its robustness to intensity 
variations and frequency-dependent noise (Tong et  al., 
2019). However, during early training stages, model pre-
dictions are often blurred. The network tends to learn 
coarse, low-frequency structures first. Additionally, ran-
dom weight initialization introduces noise in the first 
steps. MSE appears more resilient to such blur and 
frequency-independent noise, leading to more accurate 
predictions (Fig.  6). This behavior can be explained by 
PC’s reliance on strong high-frequency spectral peaks, 
which are diminished by blur (Pedone et al., 2013). MSE, 
in contrast, maintains sensitivity across the frequency 
spectrum and can better handle smooth, low-detail 
inputs that dominate during initial training.

The applied pixel-wise reconstruction loss assumes a 
precise alignment to provide an informative feedback 
signal. However, the online registration head will typically 
only succeed if a good contrast between structures is 
being predicted. In other words, there is a cross-
dependency of accurate pixel reconstructions and pro-
ducing a high contrast over training iterations, which may 
result in a conflict during training. This can be seen in 
Figure 9, where a Gram+Reg model focussing on pixel 
reconstruction only made heavily blurred predictions that 
do not provide structural details for cell-precise registra-
tion. Adding a style loss component leads to more pro-
nounced contours while simultaneously achieving higher 
pixel reconstruction accuracy (Table  4) through online 
registration. This underpins the importance of the addi-
tional style loss, which does not depend on perfect align-
ment and guides the training to produce structures. Still, 
some manual pre-alignment was required to keep the 
registration error of training data within 70 pixels (91 µm) 
and ensure sufficient structural overlap between training 
patches. This limited the amount of available training 
data, as larger registration errors, such as those from the 
initial affine alignment of whole sections, were too large 
for the online registration to succeed.

Apparently, the choice for Gram or GAN as style loss 
should be considered in the light of the application. Train-
ing with Gram loss led to more accurate cell localization 
and pixel values (Table  2). However, it was affected by 
staining intensity inhomogeneities, resulting in blurry cells 
(Fig.  8). GAN loss, on the other hand, produced higher 
contrast in cells but with lower accuracy. This could be a 
consequence of the Gram loss referring to the specific tar-
get image, while the GAN loss refers to the average scor-

ing of the discriminator across the distribution, less than 
the precision with respect to an individual image.

The choice of style loss function also impacts the sta-
bility and complexity of the training process. When using 
GAN loss, the training process has to be carefully moni-
tored. If training collapses, restarting is often necessary. 
It requires careful balancing of discriminator and genera-
tor capacities and tuning of style and reconstruction loss 
weighting. Training with Gram loss, on the other hand, is 
generally more convenient to train. It requires no balanc-
ing of model capacities, is robust to loss balancing, and 
does not collapse during training.

We expect that the expressiveness of the Gram matrix 
representation could be enhanced by replacing the VGG 
encoder, pre-trained on ImageNet, with a domain-specific 
model, which is powerful on microscopy data. This is 
technically motivated by the observation that higher-level 
features in ImageNet-pretrained networks, such as VGG, 
are optimized for object semantics in natural images 
(e.g., faces, animals, vehicles), which are irrelevant in the 
context of fine-grained texture characteristic of micros-
copy images (Stuckner et  al., 2022). In contrast, 
microscopy-specific encoders are better suited to cap-
ture such low- to mid-level textural features and have 
been shown to improve clustering (Oberstrass et  al., 
2024), segmentation (Stuckner et al., 2022), and the eval-
uation of generative models (Kropp et  al., 2024) over 
those trained on ImageNet. Therefore, computation of 
Gram matrices using domain-specific encoders (Schiffer, 
Amunts, et al., 2021; Schiffer, Spitzer, et al., 2021; Spitzer 
et al., 2017) or emerging foundation models for histology 
(Tran et al., 2024) might further enhance representation of 
cytoarchitectural characteristics.

Throughout all models, we observed occasional stain-
ing inhomogeneities in the predicted virtual stainings. An 
example of local-scale variation is the inhomogeneity 
observed in Figure 8, which may be attributed to the tiling 
strategy used during model inference to transfer whole 
sections. Since the model lacks a global view of the sec-
tion, it may reproduce variations in the training data at the 
local patch level. At a larger scale, this effect was pro-
nounced in the form of stripe patterns, for example in the 
primary motor cortex ROI (Fig.  5). These patterns typi-
cally coincide with inhomogeneities in the 3D-PLI trans-
mittance maps. During the mounting process of the 
60  µm thick sections in 20% glycerol solution on the 
object slide the gray matter is more prone to swelling 
than the more compact white matter, leading to tissue 
expansion, mechanical stress and tape flutter especially 
in the cortex due to its higher flexibility. The free-floating 
tissue between object slide and coverslip shapes waves 
of up to 30 µm in amplitude. These waves affect the focus 
level and the light incidence on the tissue, hence the 
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effective birefringence, modifying the polarization state of 
the transmitted light. This caused the observed stripe 
patterns in the transmittance maps and very likely con-
tributed to the staining inhomogeneities.

Cell body membranes and blood vessel walls pose 
hard edges in the cortex, resulting in diffraction patterns 
even brighter than the background field. Varying of the 
focus level of the LMP-1 microscope allows optical scan-
ning of the Poisson spots induced by diffraction. Cell 
bodies are highlighted with higher contrast by shifting 
and lowering the focal plane to the top and the bottom of 
the tissue by approximately ±30 µm (Fig. 11). The ability 
to predict cells from 3D-PLI measurements was shown to 
be sensitive to variations in the focus level. An effective 
countermeasure against waves in the tissue, to maintain 
a constant level across the entire section, is to weight the 
open coverslips after embedding overnight. In addition, 
the acquisition of multiple levels for each section could 
potentially provide missing information. For the given 
dataset, however, these potential solutions were not 
applicable, and measurements could not be easily 
repeated. Since shifting the focus toward the tissue sur-
face degrades optical resolution, a center focus level is 
used by default in 3D-PLI for an optimal representation of 
nerve fibers. The acquisition of multiple focus levels of  
±30 µm to increase the visibility of cell bodies would sig-
nificantly increase the measurement effort. Nevertheless, 
it will be an important consideration for future investiga-
tions to include multiple focus levels in each measure-
ment to improve cell extraction.

It must be noted that shrinking and swelling of the tissue 
also affects the measured areas of individual 2D segmented 
cell bodies. Tissue deformation in histology is complex, 
involving anisotropic effects and differences between cellu-
lar and extracellular structures (Dorph-Petersen et al., 2001; 
West, 2013), which cannot be fully captured by the global 
shrinkage factor estimated in Section 2.1.3. At the same 
time, there are only sparse data available that quantifies 
such effects, and the precise conditions of histological pro-
cessing differ between each other, and it can be assumed 
that such differences influence the specific shrinkage  
values. In paraffin-embedded human sections, a mean dif-
ference of 9% between gray and white matter shrinkage 
has been reported (Kretschmann et  al., 1982). As frozen 
sections generally show less in-plane deformation than 
paraffin sections (West, 2013), we treat this value as an 
upper bound for our acqusition. Since gray matter contains 
relatively more cell bodies than white matter, similar shrink-
age of gray and white matter suggests that shrinkage of 
cell bodies and neuropil should also not differ significantly 
(Amunts et  al., 1999). By performing non-linear co-
registration of Cresyl violet to 3D-PLI and applying a subse-
quent global correction of cell sizes to account for swelling 

effects from MRI to 3D-PLI, we assume that major shrink-
age effects are compensated. However, residual local vari-
ations or relative slice-to-slice differences may persist and 
will require a more systematic approach in future work.

While most of the larger cells (>100 µm² in-plane size) 
could be localized in 3D-PLI parameter maps, smaller 
cells were often missed or misplaced in the predictions. 
This is expected as smaller cell structures are often dom-
inated by a stronger signal of intersecting nerve fibers or 
overlay each other due to the high section thickness of 
60  µm required for 3D-PLI. In our experiments, we 
observed that stronger birefringence, corresponding to 
higher retardation values, resulted in reduced capability 
of models to reconstruct cell instances. Since birefrin-
gence increases with myelin density and homogeneity, 
predictions in regions with densely packed myelinated 
nerve fibers, such as white matter, are thus less reliably 
captured by the virtual stainings. In white matter, detect-
ing cell bodies may even be infeasible, as the predomi-
nant oligodendrocytes form the myelin sheath and are 
therefore indistinguishable from it. In gray matter, this lim-
itation may explain the stronger arrangement of cells into 
cortical columns in the predictions compared to the tar-
get images in Figure 8, as the strong signal of myelinated 
radial fibers can obscure underlying cell instances. The 
presence or absence of this arrangement is one of the 
criteria used to identify cortical areas, which might impair 
downstream interpretation of the predicted architecture.

As shown by the differences in F1 values in Appendix 
Table A1, cells were reconstructed more accurately in 
isocortical areas (motor cortex and temporal cortex) than 
in the hippocampus or the subcortical nuclei (putamen 
and globus pallidus). The lower F1 in the putamen com-
pared to the motor and temporal areas can be attributed 
to its neuronal composition and the fundamentally differ-
ent spatial arrangement of cell bodies in cortical versus 
subcortical regions, as well as their relation to fiber bun-
dles. The putamen is composed of medium-sized spiny 
neurons and relatively small interneurons arranged 
around and between bundles of myelinated fibers, which 
course through the putamen and give rise to its charac-
teristic striated appearance (Heilbronner et al., 2025). In 
this region, two challenges reduce predictability: small 
interneurons are difficult to detect with our approach, and 
fiber bundles may intersect or obscure cell bodies, mak-
ing them harder to reconstruct. Moreover, the cell bodies 
of spiny neurons can resemble fiber bundles oriented 
perpendicular to the section plane, appearing as dark 
patches in the transmittance image. The globus pallidus 
contains relatively large but sparsely distributed neurons, 
which are embedded in a dense matrix of multidirection-
ally oriented myelinated fibers (Heilbronner et al., 2025). 
Here, predictability is reduced by the number and com-
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plex spatial organization of intersecting myelinated fiber 
bundles and blood vessels. The low F1 value in patches 
extracted from the CA1-CA3 regions of the hippocampus 
is more difficult to explain, though it may result from the 
fact that they cover both the pyramidal layer, with its 
numerous and relatively large pyramidal cells, and the 
radiatum layer, which contains sparsely packed and rela-
tively small interneurons (Zhao & Palomero-Gallagher, 
2025), which are difficult to detect with our method.

Our Gram+Reg model produced larger cells at expected 
positions and generated images with a plausible appear-
ance, making virtual stainings useful for cross-modality 
registration - at present the most relevant application. They 
also allowed the application of cytoarchitectonic tools such 
as cell segmentation or computation of GLI profiles for cor-
tical layer characterization on 3D-PLI images. As a future 
perspective, the ability to detect cell bodies in 3D-PLI may 
enhance the computation of 3D fiber orientations within 
gray matter, which is a prerequisite for fiber tractography. 
This could be achieved by improving the estimation of 
myelination, for example through the identification of vox-
els dominated by cell bodies, and potentially also support 
the localization of axon terminals. However, virtual stain-
ings occasionally contained artifacts, including staining 
inhomogeneities, omission of smaller cells, or the introduc-
tion of implausible cytoarchitectonic features. These issues 
may reflect biases in the training data, model-related arti-
facts, or missing cellular signatures in the 3D-PLI parame-
ter maps. The virtual staining allowed the identification by 
a neuroanatomist (N.P.-G.) of the borders between the 
CA1, CA2, and CA3 regions of the hippocampus, the bor-
der between the primary motor and primary somatosen-
sory areas, or the border between the retrosplenial cortex 
and cingulate area 23. However, it was not possible to 
identify the border between the core and lateral belt audi-
tory areas, because it is characterized by differences in the 
packing density of small pyramids (Hackett et al., 2001), 
which currently cannot be reliably predicted. Therefore, we 
do not yet consider the method sufficiently robust for reli-
able cytoarchitectonic brain area mapping. Nevertheless, 
we are convinced that expanding the number of training 
sections, brain regions, and focus levels across brains and 
species can improve model performance and generaliz-
ability. While such expansion would require re-training, 
each additional sample would teach the model novel archi-
tectural patterns, improving its robustness across domains.

5.  CONCLUSIONS

Motivated by previous observations that larger cells are 
encoded in 3D-PLI parameter maps alongside fiber ori-
entations (Zeineh et  al., 2017), we introduced a deep 
learning model for transforming 3D-PLI maps into virtual 

Cresyl violet cell body stainings. This approach enables 
joint visualization of fiber tracts and cell bodies in the 
same tissue. Compared to real post-staining, the model 
may offer a scalable alternative that avoids manual labor.

A central contribution of our approach is the integra-
tion of an online registration head during training. This 
component eliminates the need for explicit, pixel-
accurate multimodal registration, which is commonly 
required in virtual staining pipelines (de Haan et al., 2021; 
Rivenson et al., 2020; Yang et al., 2022). It is a simple but 
highly efficient add-on that can be combined with various 
loss formulations, leveraging model-estimated land-
marks, to continuously refine the alignment over time.

The developed method enables localization of most of 
the larger cell bodies in gray matter (>100 µm² in-plane size) 
from 3D-PLI and a successful adaptation to the appear-
ance of real Cresyl violet stainings. As such, it expands the 
usability of 3D-PLI in large-scale data settings, allowing vir-
tual staining at scale. While such synthetic data cannot and 
should not replace real histological measurements, it offers 
promising opportunities in downstream analysis. Although 
we see the present method not yet robust enough for 
cytoarchitectonic mapping, potential applications include 
cross-modal image registration to align real Cresyl violet 
and 3D-PLI, performing cell segmentation in 3D-PLI 
images, or missing data imputation in serial section stacks. 
Especially in interleaved modalities, this could enable the 
reconstruction of complete datasets. Of course, such 
applications require careful quality control, a clear separa-
tion and demarcation of synthetic data from real measure-
ments, and careful interpretation of derived results.

The outcomes of this study lay the groundwork for pro-
spective investigations focused on enhancing 3D-PLI 
analysis, particularly through the exploration of dedicated 
cell detection techniques to directly extract cell body 
instances from 3D-PLI data. Furthermore, the findings 
serve as a motivation for gathering additional training 
data, aiming to refine and extend the application of the 
virtual Cresyl violet staining to a broader range of sections, 
brains, and species. While the current model is trained 
specifically to replicate Cresyl violet stainings, the same 
methodology can in principle be adapted to other staining 
types, provided appropriate retraining is performed. Future 
research should focus on further investigating its transfer-
ability to other datasets, staining protocols, and brains.

DATA AND CODE AVAILABILITY

The training pipeline for presented Gram+Reg and 
GAN+Reg models is available on GitHub.4

4  https://github​.com​/FZJ​-INM1​-BDA​/pli2cells

https://github.com/FZJ-INM1-BDA/pli2cells
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Code for the online registration,5 data augmentations 
for 3D-PLI images,6 visualization methods for 3D-PLI 
modalities,7 as well as additional dependencies8 are 
hosted on our external GitLab server.

ROIs employed for the training and testing of the mod-
els in this study, along with a selection of model predic-
tions, are available in our central institutional repository 
(Oberstrass et  al., 2025). In addition, the repository 
includes whole-slide predictions for test section  559 
along with corresponding 3D-PLI modalities.
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Appendix Table A1.  Specific quantitative results per test ROI.

ROI Method MI ↑ RMSE ↓ SSIM ↑ F1 ↑

Motor cortex Gram 0.061 ± 0.013 33.9 ± 1.0 0.306 ± 0.024 24.8 ± 3.5
Gram+Reg 0.168 ± 0.003 29.2 ± 0.6 0.446 ±  0.002 42.9 ±  0.3
GAN 0.117 ± 0.016 34.7 ± 1.1 0.268 ± 0.010 16.8 ±  1.0
GAN+Reg 0.165 ± 0.015 29.6 ± 1.0 0.394 ± 0.013 36.3 ±  2.1

Hippocampus Gram 0.184 ± 0.015 34.5 ± 0.9 0.340 ± 0.013 19.4 ± 2.3
Gram+Reg 0.303 ± 0.003 31.1 ± 0.5 0.448 ± 0.001 31.4 ±  0.4
GAN 0.078 ± 0.016 44.3 ± 3.1 0.262 ± 0.016 6.9 ±  1.3
GAN+Reg 0.151 ± 0.036 32.1 ± 0.6 0.373 ±  0.027 24.9 ±  1.9

Temporal cortex Gram 0.077 ± 0.018 33.9 ±  0.8 0.319 ± 0.040 31.7 ±  4.5
Gram+Reg 0.236 ± 0.003 29.1 ± 0.4 0.497 ± 0.004 52.7 ± 0.4
GAN 0.051 ± 0.006 43.1 ±  5.4 0.238 ± 0.019 18.3 ± 2.7
GAN+Reg 0.192 ± 0.015 30.1 ±  1.5 0.460 ± 0.017 49.6 ± 1.3

Subcortical nuclei Gram 0.122 ± 0.007 32.0 ±  0.6 0.290 ± 0.016 15.7 ± 2.2
Gram+Reg 0.190 ± 0.004 29.2 ± 0.4 0.388 ± 0.001 29.4 ±  0.5
GAN 0.138 ± 0.028 33.0 ± 0.8 0.245 ± 0.013 11.4 ± 0.9
GAN+Reg 0.132 ± 0.014 29.9 ± 0.7 0.330 ± 0.014 20.9 ± 1.6

The deviation is reported as standard error over four independent trainings with different random seeds. Arrows indicate the direction of 
better performance (↑ higher is better, ↓ lower is better). Best scores per ROI in bold.


