001     1049199
005     20251217202227.0
024 7 _ |a 10.34734/FZJ-2025-05281
|2 datacite_doi
037 _ _ |a FZJ-2025-05281
041 _ _ |a English
100 1 _ |a Zhao, Xuan
|0 P:(DE-Juel1)200005
|b 0
111 2 _ |a NeurIPS 2025 - Reliable ML Workshop
|c San Diego
|d 2025-12-02 - 2025-12-08
|w USA
245 _ _ |a Probabilistic Framework for Robustness of Counterfactual Explanations Under Data Shifts
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1765992376_17930
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Counterfactual explanations (CEs) are a powerful method for interpreting machine learning models, but CEs might be not valid when the model is updated due to distribution shifts in the underlying data. Existing approaches to robust CEs often impose explicit bounds on model parameters to ensure stability, but such bounds can be difficult to estimate and overly restrictive in practice. In this work, we propose a data shift-driven probabilistic framework for robust counterfactual explanations with plausible data shift modeling via a Wasserstein ball. We formalize a linearized Wasserstein perturbation scheme that captures realistic distributional changes which enables Monte Carlo estimation of CE robustness probabilities with domain-specific data shift tolerances. Theoretical analysis reveals that our framework is equivalent in spirit to model parameter bounding approaches but offers greater flexibility, avoids the need to estimate maximal model parameter shifts. Experiments on real-world datasets demonstrate that the proposed method maintains high robustness of CEs under plausible distribution shifts, outperforming conventional parameter-bounding techniques in both validity and proximity costs.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
700 1 _ |a Krieger, Lena
|0 P:(DE-Juel1)196726
|b 1
|u fzj
700 1 _ |a Cao, Zhuo
|0 P:(DE-Juel1)199019
|b 2
|u fzj
700 1 _ |a Bangun, Arya
|0 P:(DE-Juel1)184644
|b 3
|u fzj
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 4
|u fzj
700 1 _ |a Assent, Ira
|0 P:(DE-Juel1)188313
|b 5
|u fzj
856 4 _ |u https://openreview.net/forum?id=sLcLSPx6N4#discussion
856 4 _ |u https://juser.fz-juelich.de/record/1049199/files/184_Probabilistic_Framework_fo.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1049199
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)200005
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)196726
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)199019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184644
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188313
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21