001     1049200
005     20251211202159.0
024 7 _ |a 10.1109/TIM.2025.3561427
|2 doi
024 7 _ |a 0018-9456
|2 ISSN
024 7 _ |a 0096-2260
|2 ISSN
024 7 _ |a 1557-9662
|2 ISSN
024 7 _ |a 2168-1902
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-05282
|2 datacite_doi
037 _ _ |a FZJ-2025-05282
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Pegoraro, Paolo Attilio
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Improved Fault Detection and Location Method in Three-Phase Distribution Networks Leveraging Traceable PMU Measurements
260 _ _ |a New York, NY
|c 2025
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765464521_29138
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Several fault detection methods and location algorithms in the literature are founded on state estimation (SE). In recent approaches, in most cases, the SE process is performed based on synchronized measurements provided by phasor measurement units (PMUs). However, coupling fault identification with phasor measurements is a challenging task, which can present several risks. Particularly, in dynamic scenarios related to faults, the traceability of the measurements could be compromised. This article, relying on dynamics detection policies to evaluate at run time measurements applicability, proposes a novel fault detection and location method based on PMU measurements, which improves both correct location rate and location speed, thanks to a more robust definition of detection indicators and of the needed thresholds. Using only traceable measurements, decision risks can be reduced in a few PMU reporting intervals. The validity of the proposed approach is confirmed by the simulations carried out by means of a real-time digital simulator (RTDS) on a three-phase CIGRE European Medium Voltage (MV) distribution network in different fault configurations and measurement scenarios.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 1
536 _ _ |a 1123 - Smart Areas and Research Platforms (POF4-112)
|0 G:(DE-HGF)POF4-1123
|c POF4-112
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sitzia, Carlo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Solinas, Antonio Vincenzo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sulis, Sara
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Carta, Daniele
|0 P:(DE-Juel1)186779
|b 4
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 5
|u fzj
773 _ _ |a 10.1109/TIM.2025.3561427
|g Vol. 74, p. 1 - 12
|0 PERI:(DE-600)2027532-8
|p 1 - 12
|t IEEE transactions on instrumentation and measurement
|v 74
|y 2025
|x 0018-9456
856 4 _ |u https://juser.fz-juelich.de/record/1049200/files/Improved_Fault_Detection_and_Location_Method_in_Three-Phase_Distribution_Networks_Leveraging_Traceable_PMU_Measurements.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1049200
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a University of Cagliari
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)186779
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)179029
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1123
|x 2
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T INSTRUM MEAS : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T INSTRUM MEAS : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21