001     1049203
005     20260106202634.0
024 7 _ |a 10.5194/acp-25-17973-2025
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-05285
|2 datacite_doi
037 _ _ |a FZJ-2025-05285
082 _ _ |a 550
100 1 _ |a Konopka, Paul
|0 P:(DE-Juel1)129130
|b 0
|e Corresponding author
245 _ _ |a Isentropic mixing vs. convection in CLaMS-3.0/MESSy: evaluation using satellite climatologies and in situ carbon monoxide observations
260 _ _ |a Katlenburg-Lindau
|c 2025
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767693437_20189
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lagrangian modeling of transport, as implemented in the Chemical Lagrangian Model of the Stratosphere (CLaMS), connects the advective (reversible) component of transport along 3D trajectories with mixing, the irreversible component. Here, we investigate the interplay between strongly localized convective uplifts and large-scale flow dynamics in the upper troposphere and lower stratosphere (UTLS). We revisit the Lagrangian formulation of convection in CLaMS-3.0/MESSy, driven by ECMWF's ERA5 reanalysis, and further develop the model. These developments include refining spatial resolution in the Planetary Boundary Layer (PBL) and decoupling the frequency of the adaptive grid procedure – which captures isentropic mixing and redefines Lagrangian air parcels – from the parameterization of convection.To improve the model's UTLS transport representation, particularly from the PBL over days to weeks, we derive zonally and seasonally resolved climatologies of CO partial columns (XCO, spanning 147–68 hPa) and compare them with Microwave Limb Sounder (MLS) and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) observations, as well as in situ data. Incorporating a parameterization for unresolved convection significantly improves CO anomaly representation in the UTLS, particularly in capturing seasonal and spatial patterns. While the simulated absolute XCO values align better with ACE-FTS, the model reproduces MLS anomalies more accurately, suggesting MLS better represents CO variability. In situ observations in the boreal polar region generally support lower ACE-FTS CO values, while MLS better represents CO enhancements in air affected by the Asian summer monsoon above 10 km.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ploeger, Felix
|0 P:(DE-Juel1)129141
|b 1
700 1 _ |a D'Amato, Francesco
|0 0000-0003-1349-6650
|b 2
700 1 _ |a Campos, Teresa
|0 0000-0002-7226-3569
|b 3
700 1 _ |a von Hobe, Marc
|0 P:(DE-Juel1)129170
|b 4
700 1 _ |a Honomichl, Shawn B.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hoor, Peter
|0 0000-0001-6582-6864
|b 6
700 1 _ |a Pan, Laura L.
|0 0000-0001-7377-2114
|b 7
700 1 _ |a Santee, Michelle L.
|0 0000-0002-9466-7257
|b 8
700 1 _ |a Viciani, Silvia
|0 0000-0003-2260-094X
|b 9
700 1 _ |a Walker, Kaley A.
|0 0000-0003-3420-9454
|b 10
700 1 _ |a Hegglin, Michaela I.
|0 P:(DE-Juel1)192244
|b 11
773 _ _ |a 10.5194/acp-25-17973-2025
|g Vol. 25, no. 23, p. 17973 - 17996
|0 PERI:(DE-600)2069847-1
|n 23
|p 17973 - 17996
|t Atmospheric chemistry and physics
|v 25
|y 2025
|x 1680-7316
856 4 _ |u https://juser.fz-juelich.de/record/1049203/files/Invoice_Helmholtz-PUC-2025-159.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1049203/files/acp-25-17973-2025.pdf
909 C O |o oai:juser.fz-juelich.de:1049203
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129170
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)192244
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-12-20T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-12-20T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-12-20T09:38:07Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2022-12-20T09:38:07Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
920 1 _ |0 I:(DE-Juel1)ICE-4-20101013
|k ICE-4
|l Stratosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICE-4-20101013
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21