001049207 001__ 1049207
001049207 005__ 20251217202227.0
001049207 0247_ $$2doi$$a10.1364/AO.547144
001049207 0247_ $$2ISSN$$a1559-128X
001049207 0247_ $$2ISSN$$a0003-6935
001049207 0247_ $$2ISSN$$a1539-4522
001049207 0247_ $$2ISSN$$a1540-8981
001049207 0247_ $$2ISSN$$a2155-3165
001049207 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05289
001049207 037__ $$aFZJ-2025-05289
001049207 082__ $$a530
001049207 1001_ $$00000-0002-6009-9888$$aTrim, Simon A.$$b0$$eCorresponding author
001049207 245__ $$aSimulation of a simultaneous traceable spectroradiometric calibration of an imaging spectrometer
001049207 260__ $$aWashington, DC$$bOptical Soc. of America$$c2025
001049207 3367_ $$2DRIVER$$aarticle
001049207 3367_ $$2DataCite$$aOutput Types/Journal article
001049207 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765994171_6046
001049207 3367_ $$2BibTeX$$aARTICLE
001049207 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049207 3367_ $$00$$2EndNote$$aJournal Article
001049207 520__ $$aSpectroradiometric calibration aims to determine the instrumental spectral response function (ISRF) parameters and radiometric coefficients of an instrument’s spectral bands across all spatial pixels. Typically, this is done by making separate spectral and radiometric calibration measurements. We present a method for the simultaneous traceable spectroradiometric calibration of an imaging spectrometer, using the Spectroscopically Tunable Absolute Radiometric, calibration and characterisation, Optical Ground Support Equipment (STAR-cc-OGSE) facility. We performed the forward simulation of calibration data acquisition by convolving input spectra with the sensor model’s response and simulated a slit scattering function (SSF)-based calibration, allowing for both ISRF coefficients and the absolute spectral responsivities to be accurately retrieved from a single series of measurements. We show how the SSF method minimizes uncertainties compared to the traditional spectroradiometric calibration approach.
001049207 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049207 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
001049207 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049207 7001_ $$0P:(DE-Juel1)188104$$aBuffat, Jim$$b1
001049207 7001_ $$0P:(DE-HGF)0$$aHueni, Andreas$$b2
001049207 773__ $$0PERI:(DE-600)1474462-4$$a10.1364/AO.547144$$gVol. 64, no. 4, p. 782 -$$n4$$p782 -$$tApplied optics$$v64$$x1559-128X$$y2025
001049207 8564_ $$uhttps://juser.fz-juelich.de/record/1049207/files/Trim%20et%20al_2025_Simulation%20of%20a%20simultaneous%20traceable%20spectroradiometric%20calibration%20of%20an.pdf$$yOpenAccess
001049207 909CO $$ooai:juser.fz-juelich.de:1049207$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001049207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188104$$aForschungszentrum Jülich$$b1$$kFZJ
001049207 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049207 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
001049207 9141_ $$y2025
001049207 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001049207 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001049207 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
001049207 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL OPTICS : 2022$$d2024-12-11
001049207 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001049207 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001049207 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001049207 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001049207 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001049207 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-11
001049207 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001049207 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001049207 920__ $$lyes
001049207 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001049207 980__ $$ajournal
001049207 980__ $$aVDB
001049207 980__ $$aUNRESTRICTED
001049207 980__ $$aI:(DE-Juel1)IAS-8-20210421
001049207 9801_ $$aFullTexts