| Home > Publications database > Simulation of a simultaneous traceable spectroradiometric calibration of an imaging spectrometer > print |
| 001 | 1049207 | ||
| 005 | 20251217202227.0 | ||
| 024 | 7 | _ | |a 10.1364/AO.547144 |2 doi |
| 024 | 7 | _ | |a 1559-128X |2 ISSN |
| 024 | 7 | _ | |a 0003-6935 |2 ISSN |
| 024 | 7 | _ | |a 1539-4522 |2 ISSN |
| 024 | 7 | _ | |a 1540-8981 |2 ISSN |
| 024 | 7 | _ | |a 2155-3165 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-05289 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-05289 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Trim, Simon A. |0 0000-0002-6009-9888 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Simulation of a simultaneous traceable spectroradiometric calibration of an imaging spectrometer |
| 260 | _ | _ | |a Washington, DC |c 2025 |b Optical Soc. of America |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1765994171_6046 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Spectroradiometric calibration aims to determine the instrumental spectral response function (ISRF) parameters and radiometric coefficients of an instrument’s spectral bands across all spatial pixels. Typically, this is done by making separate spectral and radiometric calibration measurements. We present a method for the simultaneous traceable spectroradiometric calibration of an imaging spectrometer, using the Spectroscopically Tunable Absolute Radiometric, calibration and characterisation, Optical Ground Support Equipment (STAR-cc-OGSE) facility. We performed the forward simulation of calibration data acquisition by convolving input spectra with the sensor model’s response and simulated a slit scattering function (SSF)-based calibration, allowing for both ISRF coefficients and the absolute spectral responsivities to be accurately retrieved from a single series of measurements. We show how the SSF method minimizes uncertainties compared to the traditional spectroradiometric calibration approach. |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) |0 G:(DE-HGF)POF4-2173 |c POF4-217 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Buffat, Jim |0 P:(DE-Juel1)188104 |b 1 |
| 700 | 1 | _ | |a Hueni, Andreas |0 P:(DE-HGF)0 |b 2 |
| 773 | _ | _ | |a 10.1364/AO.547144 |g Vol. 64, no. 4, p. 782 - |0 PERI:(DE-600)1474462-4 |n 4 |p 782 - |t Applied optics |v 64 |y 2025 |x 1559-128X |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1049207/files/Trim%20et%20al_2025_Simulation%20of%20a%20simultaneous%20traceable%20spectroradiometric%20calibration%20of%20an.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1049207 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)188104 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 1 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-11 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL OPTICS : 2022 |d 2024-12-11 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-11 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-11 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-11 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-8-20210421 |k IAS-8 |l Datenanalyse und Maschinenlernen |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-8-20210421 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|