001049215 001__ 1049215 001049215 005__ 20260201105923.0 001049215 0247_ $$2doi$$a10.1103/ql7f-wzpr 001049215 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05295 001049215 037__ $$aFZJ-2025-05295 001049215 082__ $$a530 001049215 1001_ $$0P:(DE-Juel1)130749$$aKang, Kyongok$$b0$$eCorresponding author$$ufzj 001049215 245__ $$aElectric response of multiarm protein crystals 001049215 260__ $$aWoodbury, NY$$bAPS$$c2026 001049215 3367_ $$2DRIVER$$aarticle 001049215 3367_ $$2DataCite$$aOutput Types/Journal article 001049215 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769496722_25749 001049215 3367_ $$2BibTeX$$aARTICLE 001049215 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001049215 3367_ $$00$$2EndNote$$aJournal Article 001049215 520__ $$aElectric fields can modify protein-protein interactions and thereby influence phase behavior. In lysozyme–sodium thiocyanate solutions, we recently observed shifts in both the crystallization boundary and theliquid-liquid phase separation line under a weak applied field, along with a range of distinct crystal morphologies.Here, we explore how forming protein crystals respond to variations in field frequency and amplitude, focusingon the morphologies of complex, multiarm structures. At constant protein and salt concentrations, the appliedfield governs both the number and the angular distribution of crystal arms. These features are analyzed throughFourier analysis of microscopy images, revealing cooperative angular ordering among the arms. Based on theseobservations, we classify three principal multiarm protein crystal (pX) morphologies: flowerlike pX (dominantat high field strengths), triconic pX (appearing nonmonotonically at lower fields), and conic pX (widely observedunder low-field conditions). Near the crystallization boundary, field-driven metastable structures such as tubules,clusters, nematic domains, and fibers also occur in response to the field. These findings demonstrate that electricfields effectively steer protein crystallization pathways and provide insight into the mechanisms of variousmultiarm crystallization. 001049215 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0 001049215 536__ $$0G:(GEPRIS)495795796$$aDFG project G:(GEPRIS)495795796 - Das Phasenverhalten von Proteinlösungen in elektrischen Feldern (495795796)$$c495795796$$x1 001049215 7001_ $$0P:(DE-Juel1)180761$$aPlatten, Florian$$b1$$ufzj 001049215 7001_ $$0P:(DE-Juel1)184311$$aRay, Debes$$b2$$ufzj 001049215 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/ql7f-wzpr$$p014403$$tPhysical review / E$$v113$$x2470-0045$$y2026 001049215 8564_ $$uhttps://juser.fz-juelich.de/record/1049215/files/INV_25_DEC_018965.pdf 001049215 8564_ $$uhttps://juser.fz-juelich.de/record/1049215/files/Kang.pdf$$yOpenAccess 001049215 8767_ $$8INV/25/DEC/018965$$92025-12-11$$a1200220978$$d2025-12-16$$eColour charges$$jZahlung erfolgt 001049215 909CO $$ooai:juser.fz-juelich.de:1049215$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 001049215 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001049215 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10 001049215 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10 001049215 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-10 001049215 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001049215 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10 001049215 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10 001049215 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10 001049215 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10 001049215 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10 001049215 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001049215 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10 001049215 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2022$$d2024-12-10 001049215 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10 001049215 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10 001049215 9141_ $$y2026 001049215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130749$$aForschungszentrum Jülich$$b0$$kFZJ 001049215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180761$$aForschungszentrum Jülich$$b1$$kFZJ 001049215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184311$$aForschungszentrum Jülich$$b2$$kFZJ 001049215 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0 001049215 920__ $$lyes 001049215 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0 001049215 980__ $$ajournal 001049215 980__ $$aVDB 001049215 980__ $$aUNRESTRICTED 001049215 980__ $$aI:(DE-Juel1)IBI-4-20200312 001049215 980__ $$aAPC 001049215 9801_ $$aAPC 001049215 9801_ $$aFullTexts