001     1049215
005     20260201105923.0
024 7 _ |2 doi
|a 10.1103/ql7f-wzpr
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2025-05295
037 _ _ |a FZJ-2025-05295
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)130749
|a Kang, Kyongok
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Electric response of multiarm protein crystals
260 _ _ |a Woodbury, NY
|b APS
|c 2026
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1769496722_25749
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Electric fields can modify protein-protein interactions and thereby influence phase behavior. In lysozyme–sodium thiocyanate solutions, we recently observed shifts in both the crystallization boundary and theliquid-liquid phase separation line under a weak applied field, along with a range of distinct crystal morphologies.Here, we explore how forming protein crystals respond to variations in field frequency and amplitude, focusingon the morphologies of complex, multiarm structures. At constant protein and salt concentrations, the appliedfield governs both the number and the angular distribution of crystal arms. These features are analyzed throughFourier analysis of microscopy images, revealing cooperative angular ordering among the arms. Based on theseobservations, we classify three principal multiarm protein crystal (pX) morphologies: flowerlike pX (dominantat high field strengths), triconic pX (appearing nonmonotonically at lower fields), and conic pX (widely observedunder low-field conditions). Near the crystallization boundary, field-driven metastable structures such as tubules,clusters, nematic domains, and fibers also occur in response to the field. These findings demonstrate that electricfields effectively steer protein crystallization pathways and provide insight into the mechanisms of variousmultiarm crystallization.
536 _ _ |0 G:(DE-HGF)POF4-5241
|a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|c POF4-524
|f POF IV
|x 0
536 _ _ |0 G:(GEPRIS)495795796
|a DFG project G:(GEPRIS)495795796 - Das Phasenverhalten von Proteinlösungen in elektrischen Feldern (495795796)
|c 495795796
|x 1
700 1 _ |0 P:(DE-Juel1)180761
|a Platten, Florian
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)184311
|a Ray, Debes
|b 2
|u fzj
773 _ _ |0 PERI:(DE-600)2844562-4
|a 10.1103/ql7f-wzpr
|p 014403
|t Physical review / E
|v 113
|x 2470-0045
|y 2026
856 4 _ |u https://juser.fz-juelich.de/record/1049215/files/INV_25_DEC_018965.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1049215/files/Kang.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1049215
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130749
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)180761
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)184311
|a Forschungszentrum Jülich
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-524
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5241
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Molecular and Cellular Information Processing
|x 0
914 1 _ |y 2026
915 p c |0 PC:(DE-HGF)0000
|2 APC
|a APC keys set
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2024-12-10
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2024-12-10
915 _ _ |0 StatID:(DE-HGF)1230
|2 StatID
|a DBCoverage
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-10
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2024-12-10
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2024-12-10
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PHYS REV E : 2022
|d 2024-12-10
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21