| 001 | 1049215 | ||
| 005 | 20260201105923.0 | ||
| 024 | 7 | _ | |2 doi |a 10.1103/ql7f-wzpr |
| 024 | 7 | _ | |2 datacite_doi |a 10.34734/FZJ-2025-05295 |
| 037 | _ | _ | |a FZJ-2025-05295 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |0 P:(DE-Juel1)130749 |a Kang, Kyongok |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Electric response of multiarm protein crystals |
| 260 | _ | _ | |a Woodbury, NY |b APS |c 2026 |
| 336 | 7 | _ | |2 DRIVER |a article |
| 336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
| 336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1769496722_25749 |
| 336 | 7 | _ | |2 BibTeX |a ARTICLE |
| 336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
| 336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
| 520 | _ | _ | |a Electric fields can modify protein-protein interactions and thereby influence phase behavior. In lysozyme–sodium thiocyanate solutions, we recently observed shifts in both the crystallization boundary and theliquid-liquid phase separation line under a weak applied field, along with a range of distinct crystal morphologies.Here, we explore how forming protein crystals respond to variations in field frequency and amplitude, focusingon the morphologies of complex, multiarm structures. At constant protein and salt concentrations, the appliedfield governs both the number and the angular distribution of crystal arms. These features are analyzed throughFourier analysis of microscopy images, revealing cooperative angular ordering among the arms. Based on theseobservations, we classify three principal multiarm protein crystal (pX) morphologies: flowerlike pX (dominantat high field strengths), triconic pX (appearing nonmonotonically at lower fields), and conic pX (widely observedunder low-field conditions). Near the crystallization boundary, field-driven metastable structures such as tubules,clusters, nematic domains, and fibers also occur in response to the field. These findings demonstrate that electricfields effectively steer protein crystallization pathways and provide insight into the mechanisms of variousmultiarm crystallization. |
| 536 | _ | _ | |0 G:(DE-HGF)POF4-5241 |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |c POF4-524 |f POF IV |x 0 |
| 536 | _ | _ | |0 G:(GEPRIS)495795796 |a DFG project G:(GEPRIS)495795796 - Das Phasenverhalten von Proteinlösungen in elektrischen Feldern (495795796) |c 495795796 |x 1 |
| 700 | 1 | _ | |0 P:(DE-Juel1)180761 |a Platten, Florian |b 1 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)184311 |a Ray, Debes |b 2 |u fzj |
| 773 | _ | _ | |0 PERI:(DE-600)2844562-4 |a 10.1103/ql7f-wzpr |p 014403 |t Physical review / E |v 113 |x 2470-0045 |y 2026 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1049215/files/INV_25_DEC_018965.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1049215/files/Kang.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1049215 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)130749 |a Forschungszentrum Jülich |b 0 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)180761 |a Forschungszentrum Jülich |b 1 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)184311 |a Forschungszentrum Jülich |b 2 |k FZJ |
| 913 | 1 | _ | |0 G:(DE-HGF)POF4-524 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5241 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Molecular and Cellular Information Processing |x 0 |
| 914 | 1 | _ | |y 2026 |
| 915 | p | c | |0 PC:(DE-HGF)0000 |2 APC |a APC keys set |
| 915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2024-12-10 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2024-12-10 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1230 |2 StatID |a DBCoverage |b Current Contents - Electronics and Telecommunications Collection |d 2024-12-10 |
| 915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2024-12-10 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-10 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2024-12-10 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2024-12-10 |
| 915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |d 2024-12-10 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
| 915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2024-12-10 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b PHYS REV E : 2022 |d 2024-12-10 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2024-12-10 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2024-12-10 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-4-20200312 |k IBI-4 |l Biomakromolekulare Systeme und Prozesse |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-4-20200312 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|