001049489 001__ 1049489
001049489 005__ 20260108204822.0
001049489 0247_ $$2doi$$a10.1103/PhysRevD.111.074515
001049489 0247_ $$2ISSN$$a2470-0010
001049489 0247_ $$2ISSN$$a2470-0037
001049489 0247_ $$2ISSN$$a2470-0029
001049489 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05297
001049489 037__ $$aFZJ-2025-05297
001049489 082__ $$a530
001049489 1001_ $$00000-0003-2141-1901$$aBazavov, Alexei$$b0
001049489 245__ $$aEfficient state preparation for the Schwinger model with a theta term
001049489 260__ $$aRidge, NY$$bAmerican Physical Society$$c2025
001049489 3367_ $$2DRIVER$$aarticle
001049489 3367_ $$2DataCite$$aOutput Types/Journal article
001049489 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767857304_26257
001049489 3367_ $$2BibTeX$$aARTICLE
001049489 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049489 3367_ $$00$$2EndNote$$aJournal Article
001049489 520__ $$aWe present a comparison of different quantum state preparation algorithms and their overall efficiency for the Schwinger model with a theta term. While adiabatic state preparation is proved to be effective, in practice it leads to large cnot gate counts to prepare the ground state. The quantum approximate optimization algorithm (QAOA) provides excellent results while keeping the cnot counts small by design, at the cost of an expensive classical minimization process. We introduce a “blocked” modification of the Schwinger Hamiltonian to be used in the QAOA that further decreases the length of the algorithms as the size of the problem is increased. The rodeo algorithm (RA) provides a powerful tool to efficiently prepare any eigenstate of the Hamiltonian, as long as its overlap with the initial guess is large enough. We obtain the best results when combining the blocked QAOA ansatz and the RA, as this provides an excellent initial state with a relatively short algorithm without the need to perform any classical steps for large problem sizes.
001049489 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049489 536__ $$0G:(GEPRIS)460248186$$aDFG project G:(GEPRIS)460248186 - PUNCH4NFDI - Teilchen, Universum, Kerne und Hadronen für die NFDI (460248186)$$c460248186$$x1
001049489 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049489 7001_ $$0P:(DE-HGF)0$$aHenke, Brandon$$b1
001049489 7001_ $$00000-0002-7416-1443$$aHostetler, Leon$$b2
001049489 7001_ $$0P:(DE-HGF)0$$aLee, Dean$$b3
001049489 7001_ $$00000-0001-6281-944X$$aLin, Huey-Wen$$b4
001049489 7001_ $$0P:(DE-Juel1)195916$$aPederiva, Giovanni$$b5$$eCorresponding author
001049489 7001_ $$0P:(DE-HGF)0$$aShindler, Andrea$$b6$$eCorresponding author
001049489 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.111.074515$$gVol. 111, no. 7, p. 074515$$n7$$p074515$$tPhysical review / D$$v111$$x2470-0010$$y2025
001049489 8564_ $$uhttps://juser.fz-juelich.de/record/1049489/files/PhysRevD.111.074515.pdf$$yOpenAccess
001049489 909CO $$ooai:juser.fz-juelich.de:1049489$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001049489 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
001049489 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195916$$aForschungszentrum Jülich$$b5$$kFZJ
001049489 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049489 9141_ $$y2025
001049489 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001049489 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001049489 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-10
001049489 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001049489 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001049489 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001049489 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2022$$d2024-12-10
001049489 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV D : 2022$$d2024-12-10
001049489 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001049489 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001049489 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
001049489 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2024-12-10
001049489 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001049489 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2024-12-10
001049489 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001049489 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001049489 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001049489 980__ $$ajournal
001049489 980__ $$aVDB
001049489 980__ $$aUNRESTRICTED
001049489 980__ $$aI:(DE-Juel1)JSC-20090406
001049489 9801_ $$aFullTexts