001     1049489
005     20260108204822.0
024 7 _ |a 10.1103/PhysRevD.111.074515
|2 doi
024 7 _ |a 2470-0010
|2 ISSN
024 7 _ |a 2470-0037
|2 ISSN
024 7 _ |a 2470-0029
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-05297
|2 datacite_doi
037 _ _ |a FZJ-2025-05297
082 _ _ |a 530
100 1 _ |a Bazavov, Alexei
|0 0000-0003-2141-1901
|b 0
245 _ _ |a Efficient state preparation for the Schwinger model with a theta term
260 _ _ |a Ridge, NY
|c 2025
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767857304_26257
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a comparison of different quantum state preparation algorithms and their overall efficiency for the Schwinger model with a theta term. While adiabatic state preparation is proved to be effective, in practice it leads to large cnot gate counts to prepare the ground state. The quantum approximate optimization algorithm (QAOA) provides excellent results while keeping the cnot counts small by design, at the cost of an expensive classical minimization process. We introduce a “blocked” modification of the Schwinger Hamiltonian to be used in the QAOA that further decreases the length of the algorithms as the size of the problem is increased. The rodeo algorithm (RA) provides a powerful tool to efficiently prepare any eigenstate of the Hamiltonian, as long as its overlap with the initial guess is large enough. We obtain the best results when combining the blocked QAOA ansatz and the RA, as this provides an excellent initial state with a relatively short algorithm without the need to perform any classical steps for large problem sizes.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)460248186 - PUNCH4NFDI - Teilchen, Universum, Kerne und Hadronen für die NFDI (460248186)
|0 G:(GEPRIS)460248186
|c 460248186
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Henke, Brandon
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hostetler, Leon
|0 0000-0002-7416-1443
|b 2
700 1 _ |a Lee, Dean
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lin, Huey-Wen
|0 0000-0001-6281-944X
|b 4
700 1 _ |a Pederiva, Giovanni
|0 P:(DE-Juel1)195916
|b 5
|e Corresponding author
700 1 _ |a Shindler, Andrea
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1103/PhysRevD.111.074515
|g Vol. 111, no. 7, p. 074515
|0 PERI:(DE-600)2844732-3
|n 7
|p 074515
|t Physical review / D
|v 111
|y 2025
|x 2470-0010
856 4 _ |u https://juser.fz-juelich.de/record/1049489/files/PhysRevD.111.074515.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1049489
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)195916
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21