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We present a comparison of different quantum state preparation algorithms and their overall
efficiency for the Schwinger model with a theta term. While adiabatic state preparation is proved to be
effective, in practice it leads to large CNOT gate counts to prepare the ground state. The quantum
approximate optimization algorithm (QAOA) provides excellent results while keeping the CNOT counts
small by design, at the cost of an expensive classical minimization process. We introduce a “blocked”
modification of the Schwinger Hamiltonian to be used in the QAOA that further decreases the length of
the algorithms as the size of the problem is increased. The rodeo algorithm (RA) provides a powerful
tool to efficiently prepare any eigenstate of the Hamiltonian, as long as its overlap with the initial guess
is large enough. We obtain the best results when combining the blocked QAOA ansatz and the RA,
as this provides an excellent initial state with a relatively short algorithm without the need to perform
any classical steps for large problem sizes.
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I. INTRODUCTION

Despite the enormous success of the Standard Model
(SM) of particle physics, many unanswered questions
remain, such as what constitutes dark matter (and dark
energy), or the observed amount of matter-antimatter
asymmetry of the Universe. It was established many years
ago, thanks to the work of Sakharov [1], that the funda-
mental interaction and mechanism at the origin of the
baryon asymmetry in the Universe must satisfy three
conditions, known as the Sakharov conditions. An impor-
tant aspect of these conditions is that the fundamental
interaction should break CP symmetry. While the SM

contains, due to quark-flavor mixing, a direct source of CP
violation, the strength of this violation is not sufficient to
explain the observed asymmetry [2,3]. The search for
physics beyond the Standard Model (BSM) thus includes
a search for new sources of CP violation. A prototypical
example of a CP-violating interaction that has several
phenomenological implications (e.g., axions, electric
dipole moments, the baryon asymmetry of the universe)
is the θ term of the strong interactions described by
quantum chromodynamics (QCD).
QCD is a theory asymptotically free at short distances,

where it is amenable to a perturbative treatment, but at low
energy becomes nonperturbative, and to this day the only
way to perform calculations of QCD at low energy with
systematically improvable uncertainties is to regulate the
theory on a four-dimensional lattice (lattice QCD) and
solve it numerically. Lattice QCD (LQCD) is a mature field
with a well-defined selection of problems that it can
address, but also with clear obstacles that nowadays seem
insurmountable. One of these difficulties is the impossibil-
ity to solve theories that possess a complex Euclidean
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action, because it prevents the use of stochastic methods
to properly sample the field space. A classic example of
complex action in Euclidean space is QCD with a θ term.
To circumvent this problem, it is common to expand the
theory in powers of the parameter θ, which is known to be
smaller than about 10−10 [4,5], and treat the CP-violating
interaction as a perturbation of QCD. While calculations of
the neutron electric dipole moment have been done this way
[5–8], confirming the smallness of the θ parameter, ideally
we would like to have a computational framework that is
able to deal with a generic complex action, or even better that
does not need the theory to be rotated to Euclidean space,
rather allowing real-time simulations of the theory prepared
in Minkowski space. The impossibility of simulating com-
plex actions is just one of the aspects of what nowadays goes
under the very general definition of “sign problem.”
A solution, at least in theory, is represented by the

Hamiltonian formalism, which deals directly with real-time
systems, but it cannot be simulated using state-of-the-art
supercomputers, due to the large number of degrees of
freedom stemming from the regulated infinite-dimensional
Hilbert space. The simulation of a theory using the
Hamiltonian formalism seems to be a problem perfectly
suited for a quantum computer, and even though the number
of qubits currently available is still far too low to directly
simulate QCD in 3þ 1 dimensions, it is possible to use
lower-dimensional field theories that share certain properties
with QCD to test new ideas and algorithms. It is particularly
important to understand the scaling of the algorithms
with increasing size of the system and towards the con-
tinuum limit. In this work, we study quantum electrody-
namics (QED) in 1þ 1 dimensions, also known as the
Schwinger model [9], with the addition of a θ term. The
Schwinger model shares many interesting properties with
QCD, such as fermion confinement and the breaking of
the chiral U(1) symmetry due to the Schwinger anomaly,
making it an ideal toy model for testing algorithmic or
computational paradigms. Various properties of the
Schwinger model are discussed in Refs. [10–12].
The field of quantum computing for field theories,

like the Schwinger model [13–31], is making significant
advances. A possible approach is to rely on discretizing the
spatial coordinates, allowing the form of the discretized
Hamiltonians of the system to be determined using stan-
dard techniques currently employed in lattice QCD. We
have used the Schwinger model with a θ term to test several
quantum algorithms for quantum state preparation with
particular emphasis on the scaling with the size of the
problem and the number of qubits. In Sec. II we introduce
the discretization of the Schwinger model on a quantum
system, while in Sec. III we study the first algorithm, the
adiabatic state evolution. In Sec. IV we study the quantum
approximate optimization algorithm (QAOA) and in Sec. V
the newly proposed rodeo algorithm [32]. In Sec. VI we
present our summary and conclusions.

II. DISCRETIZATION OF THE SCHWINGER
MODEL ON A QUANTUM SYSTEM

A. The continuum Schwinger model

The Schwinger model is the theory of QED in 1þ 1
dimensions. In the presence of a topological θ term its
Lagrangian is typically written as

L ¼ −
1

4
FμνFμν þ gθ

4π
ϵμνFμν þ iψ̄γμð∂μ þ igAμÞψ −mψ̄ψ ;

ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field tensor, the Aμ are
U(1) gauge fields, and ϵμν is the totally antisymmetric
tensor. In 1þ 1 dimensions, the gamma matrices are
γ0 ¼ σz, γ1 ¼ iσy, and γ5 ¼ γ0γ1.
The theory has three parameters; the gauge coupling g,

the fermion mass m, and the θ angle. Following prior
works [13], we perform a chiral transformation of the fields
ψ → ei

θ
2
γ5ψ , ψ̄ → ψ̄ei

θ
2
γ5 and the path integral measure

[33,34] to arrive at an equivalent Lagrangian

L ¼ −
1

4
FμνFμν þ iψ̄γμð∂μ þ igAμÞψ −mψ̄eiθγ5ψ : ð2Þ

We choose the temporal gauge A0 ¼ 0, and then a standard
Legendre transform yields the Hamiltonian

H¼
Z

dx
�
−iψ̄γ1ð∂1þ igA1Þψþmψ̄eiθγ5ψþ1

2
E2

�
; ð3Þ

where in one spatial dimension, the electric field E¼F10¼
−Ȧ1 has only one component, and there is no magnetic
field. To satisfy gauge invariance in the temporal gauge,
additional local constraints that govern the interaction
between matter and gauge fields must be imposed.
These constraints are provided by the Gauss law
∂1EðxÞ ¼ gψ̄ðxÞγ0ψðxÞ.

B. Discretization

To simulate the Schwinger model on a quantum device,
we need a discretized formulation of the Hamiltonian
Eq. (3). We use a one-dimensional spatial lattice with N
sites and lattice spacing a. Time is kept continuous.
Following prior works [13,35,36] we use Kogut-Susskind
staggered fermions [37,38] to arrive at the Hamiltonian,

H ¼ −i
XN−1

n¼1

�
1

2a
− ð−1Þn m

2
sin θ

�
½χ†neiϕnχnþ1 − H:c:�

þm cos θ
XN
n¼1

ð−1Þnχ†nχn þ
g2a
2

XN−1

n¼1

L2
n: ð4Þ
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The gauge operators have been rescaled as A1ðxnÞ →
−ϕn=ðagÞ and EðxnÞ → gLn, where ϕn lives on site n,
and Ln lives on the link between sites n and nþ 1.
The Dirac fermion ψðxÞ ¼ ðψuðxÞ;ψdðxÞÞT , which is
a 2-component spinor in 1þ 1 dimensions, has been
mapped to a pair of 1-component fermions χn living on
neighboring sites such that χn ¼

ffiffiffi
a

p
ψuðxnÞ for even n and

χn ¼
ffiffiffi
a

p
ψdðxnÞ for odd n. In this formulation the Gauss

law becomes [36]

Ln − Ln−1 ¼ χ†nχn −
1 − ð−1Þn

2
: ð5Þ

For a given matter configuration, the gauge fields are now
completely determined.1

C. Spin Hamiltonian

The χ field can be transformed into a qubit formulation
using the Jordan-Wigner transformation [39] that trans-
forms the fermionic variables into spin variables

χn ¼
 Y

l<n

− iZl

!
Xn − iYn

2
; ð6Þ

where the spin variables are the Pauli matrices located at
each lattice point, Xi ¼ σxi , Yi ¼ σyi , Zi ¼ σzi . Using open
boundary conditions, i.e., fixing the conjugate momentum
L at the boundary, and solving the Gauss law, one obtains

Ln ¼ L0 þ
1

2

Xn
l¼1

ðZl þ ð−1ÞlÞ; ð7Þ

where the value of L0 specifies the boundary conditions.
Removing L0 is equivalent to shifting the θ angle by
2πL0 [10], thus, we can safely set L0 ¼ 0. The ϕ phases can
be absorbed into the fields by a gauge transformation
χn →

Q
l<n½e−iϕn �χn.

The final Hamiltonian, omitting constant terms, can be
decomposed as H ¼ HZZ þH� þHZ, where

HZZ ¼ J
2

XN−1

n¼2

X
1≤k<l≤n

ZkZl

H� ¼ 1

2

XN−1

n¼1

�
w − ð−1Þn m

2
sin θ

�
½XnXnþ1 þ YnYnþ1�

HZ ¼ m cos θ
2

XN
n¼1

ð−1ÞnZn −
J
2

XN−1

n¼1

ðn mod 2Þ
Xn
l¼1

Zl;

ð8Þ

where, using the same notation as Ref. [13], we denote
the relevant couplings for the adiabatic evolution as
w ¼ 1=ð2aÞ and J ¼ g2a=2.

III. ADIABATIC STATE PREPARATION

Adiabatic state preparation (ASP) is a common refer-
ence when dealing with state-preparation algorithms,
because of its relative simplicity and robustness. The
algorithm allows one to initialize a set of qubits to the
ground state of a chosen “target” Hamiltonian without
the need for any additional qubits. What is needed
instead is to find a “simple” Hamiltonian that possesses
a readily achievable ground state. The simple
Hamiltonian should be related to the full target one in
such a way that a set of coefficients can be used to
interpolate between them.
ASP works by applying a set of time evolution operators

each with a different Hamiltonian, which come from a
discretization of the interpolation between the simple and
the target Hamiltonians. This allows the state to evolve
towards the desired target ground state by always remain-
ing close to the ground state of the interpolating
Hamiltonians at all time steps.
In the Schwinger model, we select the initial

Hamiltonian as follows:

H0 ¼ HZZ þHZjm→m0;θ→0; ð9Þ

whose ground state is a state of alternating spins. The
parameters of the Hamiltonian, w ¼ 1=ð2aÞ, θ and m, are
rewritten to be adiabatically dependent on an additional
variable called “adiabatic time” t,

w →
ti
T
w θ →

ti
T
θ m →

�
1 −

ti
T

�
m0 þ

ti
T
m; ð10Þ

for a set of i ¼ 1;…;M values of the adiabatic time
ti ¼ ti−1 þ δti with time intervals δti. The end time of
the adiabatic evolution is denoted by T ¼PM

i¼1 δti.
The simplest discretization is a linear one, corresponding

to taking all δti to be the same, δti ¼ T=M, but other
nonuniform values for δti can be chosen.
To prepare the desired quantum state, we define an

adiabatic time-evolution operator Uðt; tþ δtÞ ¼ e−iHAðtÞδt,
where HAðtÞ is the interpolating adiabatic Hamiltonian at
adiabatic time t. We distinguish between two types of
linear discretizations of the adiabatic evolution, labeled
“L1” and “L2” according to the order of the Trotter
product formula used to evaluate the evolution operator
Uðt; tþ δtÞ.
Since we have three sets of noncommuting operators, the

Trotter decompositions for the time evolution operator to
first and second order are

1This is true when using open boundary conditions as in this
work.
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U1ðt; tþ δtÞ ¼ e−iHXðtÞδte−iHYðtÞδte−i½HZðtÞþHZZðtÞ�δt;

U2ðt; tþ δtÞ ¼ e−iHXðtÞδt2e−iHYðtÞδt2e−i½HZðtÞþHZZðtÞ�δt

× e−iHYðtÞδt2e−iHXðtÞδt2 ; ð11Þ

where the terms HX and HY come from the trivial splitting
of H�.
We also consider other discretizations in this paper,

given by

δti ¼ 2
T
M

sin2
�
π
i
M

�
; ð12Þ

δti ¼ 2
T
M

cos2
�
π

i
2M

�
; ð13Þ

and which we denote respectively by “S1” (or “S2”) and
“C1” (or “C2”) depending on whether we use a first-order
or a second-order Trotter product formula for the adiabatic
time evolution.
These choices are made in order to achieve discretiza-

tions that are either denser or sparser at different stages
of the adiabatic evolution. The S1, S2 discretizations are
denser at the beginning and the end of the adiabatic
evolution, while the C1, C2 choices are sparser at the
beginning of the adiabatic evolution and denser at the end.
It is common practice, in the field of quantum comput-

ing, to count the number of two-qubit gates, typically CNOT

gates, as a quantity that measures the length of the
algorithm as they have a smaller fidelity on current
quantum hardware and hence dominate the noise. For
the Hamiltonian we are considering, the number of
CNOT gates required for a single first-order Trotter step
are given by 4ðN − 1Þ þ ðN − 1ÞðN − 2Þ, where N is the
number of sites of the lattice. The first term comes from the
hopping term H�; the second comes from the nonlocal
term HZZ and crucially grows quadratically in N. The
mapping of the terms of the Hamiltonian to quantum gates
is explained in [13].
For reference, in Table I, we report the average CNOT gate

count per qubit for each step of the adiabatic time evolution
for system with N ¼ 4, 8, 12 and both first- and second-
order Trotter discretizations, which differ by a simple factor
of two. The quadratic scaling coming from HZZ dominates

already for small values of N, making the average number
of gates grow linearly with the size of the problem.

A. Numerical results

We investigate the quantum algorithm for ASP on a
classical computer, exploring how the choice of discretiza-
tion and total evolution time T influence the quality of
the prepared ground state. To assess our algorithms, we
consider the energy and overlap with the exact ground state
obtained from diagonalization. We focus in particular on
small values of M and T for two systems with N ¼ 4, 8,
which lead to short overall algorithms.
We use the Qiskit software package [40] for our numerical

simulations. This choice allows to use a gate-based
representation of the algorithms and to also access the
state vector during the simulations. There are two param-
eters that significantly impact the final approximation. The
first is the ratio δt=T, which determines the speed of the
system’s evolution between the initial and the target
Hamiltonian. A large ratio reduces the number of steps
required, but at the cost of lower precision in the inter-
mediate states, as they are further away from their eigen-
states. A small ratio, on the other hand, ensures the state
remains close to the intermediate ground states during the
evolution, but requires more steps to achieve convergence.
The second parameter is δt, which affects the ASP

algorithm by influencing the accuracy of the time evolution
operators used to approximate the Hamiltonian with the
Trotter product formula. This error can be reduced with
higher-order schemes, but this comes at the cost of longer
algorithms per time step.
In Fig. 1, we present the time evolution of the ground-

state energy, EAðtÞ, using different discretizations with
T ¼ 5 and M ¼ 10. The exact values are computed by
direct diagonalization of the intermediate Hamiltonian at
every time step. As shown, all the discretizations exhibit
good agreement with the exact results even with as few as
M ¼ 10 steps. However, we observe that the C2 and C1
discretizations yield better agreement, indicating that it may
be beneficial to perform more precise steps towards the end
of the evolution, where the Hamiltonian is closer to the
target one.
The overlap ωðtÞ between the evolved state jψAðtÞi and

the exact ground state jψ0ðtÞi of the adiabatic Hamiltonian
obtained via full diagonalization at each time t, is
ωðtÞ ¼ jhψAðtÞjψ0ðtÞij2. The plot reveals that ω is always
within 10% of the exact ground state, indicating that the
evolution successfully keeps the state close to the inter-
mediate ground state throughout the process. Notably,
we find that discretization C1 offers the most precision
throughout the adiabatic evolution but loses precision
towards the end, whereas C2 yields the best approximation
at the end of the evolution.
We investigate the dependence of the ground state energy

and its error on the total adiabatic time evolution T and the

TABLE I. Average number of CNOT gates per qubit for each
step of the adiabatic time. N is the number of points in the spatial
direction and the order refers to Trotterization adopted.

N First-order Second-order

4 4.5 9
8 8.8 17.5
12 12.8 25.7
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number of steps M. The top panel of Fig. 2 displays the
relative error for the ground state energy EAðTÞ obtained
at the end of the adiabatic evolution as a function of M.
The different colors correspond to distinct adiabatic time
evolutions T, with linear discretization orders of L1 or L2.
As expected, a larger T results in smaller errors. However,
we also observe that there is a threshold value of M for a
given T at which the relative error is minimized and after
which increasing the number of steps indefinitely does not
further reduce the relative error. This is fixed by T and is
unaffected by the order of the Trotterization.
In the bottom panel of Fig. 2 the difference between first-

order and second-order Trotterization is apparent, as the
two classes have different slopes. This indicates that using
second-order Trotterization allows smaller values of δt,
as expected, as long as the total adiabatic time T is large
enough for the algorithm to be in the scaling regime.
Overall, ASP is a reliable method for preparing the

ground state of our Hamiltonian, however, the required
algorithm is limited by the bounds imposed by the adiabatic

theorem, which then requires longer evolution times and
hence more steps and longer quantum algorithms.

B. Noise model for adiabatic state preparation

One major challenge of ASP is the length of the
algorithm resulting from the adiabatic time evolution
discretization. On noisy intermediate-scale quantum
(NISQ) machines, such algorithms can become prohibi-
tively expensive due to the presence of many CNOT gates
with relatively low precision. To investigate the impact of
CNOT gate errors on ASP, we conducted a series of
simulations using Qiskit (using discretization L2) where
we varied the error rate of the CNOT gates. Figure 3 shows
the results of this study for T ¼ 5 and M ¼ 10 where we
varied the error rate of CNOT gates from 10−2 to 0, i.e.,
noiseless. The goal is to determine what error rate would
allow the ASP algorithm to produce a good estimate of the
ground state of the N ¼ 4 Schwinger model. The plot
compares the resulting ground-state energy to the exact

FIG. 1. Ground-state energy EAðtÞ (top) and overlap with the
true ground state, ωðtÞ (bottom), versus adiabatic time t for the
Schwinger model with a theta term. The exact results, represented
by the solid line, are obtained through exact diagonalization of
the adiabatic Hamiltonian at each value of t. Various discretiza-
tions are employed, as explained in the main text.

FIG. 2. Relative error of the ground state energy EA obtained
with ASP for the same simulation parameters as Fig. 1 for the L1
and L2 discretizations. The results are compared against the exact
energy EE obtained through direct diagonalization. The top figure
shows the error as a function of the total number of steps (T=δT)
for a fixed set of total times T. The lower panel shows the error
just as a function of δT for the same set of values for T.
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results, and it is clear that, at current error rates ranging
from 10−2 to 10−3 [41], the noise significantly hinders the
algorithm’s ability to produce a high-quality state.
Figure 4 illustrates how the ground-state energy, calcu-

lated with L2 discretization at the end of the adiabatic
evolution T ¼ 5 (withM ¼ 10) depends on the error rate of
the CNOT gates. In the case of a large CNOT error rate, the
wave function tends towards a maximally disordered state,
resulting in an energy close to 0. The figure also demon-
strates that extrapolating the error rates from the current
accessible ones (indicated by a band) to regions where
the results become independent on them is not currently
possible. It will be very difficult to perform an extrapolation
unless error rates improve by 1–2 orders of magnitude.
To summarize, the limits of current quantum hardware

further limit the applicability of ASP to our system, making
a case for the need of shorter and more efficient algorithms.

IV. QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM

The QAOA [43] is a method that relies on the variational
principle to solve optimization problems. State preparation
can be cast to such a problem by giving a parametrized

ansatz for the ground state wave function and then
optimizing its parameters variationally. One of the most
prominent benefits it offers is the relatively short length
of the algorithms and the small number of parameters it
requires.
Similar to ASP, the starting point is a trivially solvable

Hamiltonian H0 with eigenstate jψ0i. The QAOA ansatz
for the ground state of the target Hamiltonian is

jψMðγ⃗; β⃗Þi ¼
 YM−1

k¼0

e−iβM−kH0e−iγM−kH

!
jψ0i; ð14Þ

where the 2M real coefficients β⃗; γ⃗ parametrize the wave
function. From the variational principle, we know that
given the parameters γ⃗� and β⃗�, the expectation value of the
Hamiltonian operator is

hψMðγ⃗�; β⃗�ÞjHjψMðγ⃗�; β⃗�Þi ¼ EV
0 ≥ E0; ð15Þ

where E0 is the true ground state of the system. This means
that we can use a minimization algorithm; in our case, we
used simulated annealing [44], because it is suitable for the
multiple local minima of the problem. The minimization is
performed classically and not on quantum hardware,
though in the future a hybrid classical-quantum algorithm
could be feasible as well.
As opposed to ASP, the length of the QAOA is chosen as

a parameter instead of having to find the optimal number of
Trotter steps. The precision of the results then depends on
the quality of the optimal solution found by the minimizer,
not on the length of the algorithm.

A. QAOA results

We applied the QAOA to the case of the Schwinger
model with the same parameters as Sec. III, so ðm;m0;
w; J; θÞ ¼ ð0; 0.5; 0.5; 0.5; 0Þ and ð1; 0.5; 0.5; 0.5; π=4Þ.
Table II displays the results for the energy expectation
value and ground-state overlap for the ground state,
obtained using the second-order Trotter formula, with
two and three QAOA steps.
For the given ansatz, the total number of CNOT gates is

given byMð8ðN − 1Þ þ ðN − 1ÞðN − 2ÞÞ for the first-order
Trotterization and twice as many for second order. This is
the same quadratic scaling as ASP, considering that
the dominant term is given by HZZ. However, the total
number of CNOT gates is much reduced because the number
of steps M is fixed beforehand to a very small number. We
used M ¼ 2, 3, which is orders of magnitude smaller than
those used in ASP.
The results show that QAOA is highly efficient in

preparing the ground state and estimating its energy, using
significantly fewer CNOT gates compared to ASP. Note
that the values in Table II refer to the total length of the
algorithm, while in Table I the count was per step.

FIG. 3. Ground state energy from ASP with L2 discretization
with varying CNOT error rate. The parameters chosen are the same
as in Fig. 1 with T ¼ 5 and M ¼ 10.

FIG. 4. Energy of the ground state from ASP at the end of
adiabatic evolution, T ¼ 5, with varying CNOT error rate. The
band indicates state-of-the-art CNOT error gates [42].
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Specifically, for the M ¼ 10 case of ASP, the second-
order approximation results in 90 CNOT gates per qubit
for N ¼ 4, leading to less accurate results when compared
to QAOA, which in turn requires only 48 CNOT gates
with three steps.
The downside of QAOA, however, is the minimization

process, which requires an accurate determination of the
optimal parameters. Although classical machines can
simulate the process with exact exponentiation for small
systems, these become problematic for larger systems.
Moreover, it is uncertain whether the minimization process
can be performed efficiently in the hybrid computation
scenario with NISQ machines. Furthermore, the results
reported in the table are the best results out of five runs
of the optimizer, as the stochasticity of the simulated
annealing method leads to slightly different results. In
principle, the variational system of Eq. (15) can have
several local minima, and any algorithm could get stuck
in one of them instead of the global minimum which
corresponds to the true ground state. However, the quali-
tative conclusions drawn from comparing QAOAwith ASP
remain unchanged, as the former is orders of magnitude
better for comparable algorithm lengths. In summary, the
results indicate that once a set of optimal coefficients γ⃗�,
and β⃗� is determined, QAOA is more effective than ASP in
preparing the ground state.

B. Blocked QAOA

To reduce the number of CNOT gates per qubit, an option
is to employ custom optimized 2-qubit gates, which can
be tailored for any unitary operation on two qubits, as
proposed in [45,46]. However, because of nonlocality of
the Hamiltonian in Eq. (8) owing to the presence of theHZZ
term, this task is not straightforward. Nevertheless, the
QAOA algorithm can still be used since it relies on a
relatively general ansatz. To handle the nonlocal term, we

introduce a modified Hamiltonian, denoted as “blocked” or
HB, which retains only the diagonal and nearest-neighbor
terms of the full Hamiltonian. Thus, defining HB ¼ H� þ
HZ þHl

ZZ this can be represented by a single 2-qubit gate,
where Hl

ZZ is the local part of HZZ. We then modify the
QAOA ansatz as follows:

jψMðγ⃗; β⃗Þi ¼ e−iβMH0e−iγMH

 YM−1

k¼1

e−iβM−kH0e−iγM−kHB

!
jψ0i:

ð16Þ

In the above equation the first M − 1 unitary applications
involve HB, and only one application of the full
Hamiltonian is applied on the final step. The aim is to
encode the nearest-neighbor interactions using the
blocked Hamiltonian, while the last step should adjust
for nonlocal effects. This approach can be implemented
only when HZZ, which comprises nonlocal terms, is not
the dominant term of the Hamiltonian. Thus, we are
restricted to cases where J is not large. The results for
the blocked approach in the N ¼ 4, 8 case are presented
in Table III.
The decrease in the number of CNOT gates is more

noticeable for larger values of N. An exact expression
for this type of blocking would be 8MðN − 1Þ þ
ðN − 1ÞðN − 2Þ. One can note that there is no significant
difference between the results with the full and blocked
QAOA ansatz. This implies that the nonlocal part of the
Hamiltonian can be encoded efficiently just in the last step.
Consequently, a possible advantage of the blocking pro-
cedure is the potential to scale the system size while
maintaining the optimal parameters γ⃗ or β⃗ fixed as N
changes. This approach is not perfect as the nonlocal part
of the Hamiltonian changes with increasing system size.
However, it produces good ansatz for larger systems without
requiring costly optimization procedures. Table IVillustrates

TABLE III. Blocked QAOA results for N ¼ 4. Here N, θ, and
m are the parameters of the simulation, M is the number of
QAOA steps. The remaining columns give the CNOT gates per
qubit, the relative error of the ground state energy measurement,
and the ground state overlap.

Method N ðθ; mÞ M CNOT/qubit Rel. Err. E0

GS
overlap

QAOA 4 (0, 0) 2 27 0.0026 0.9853
QAOA 4 (0, 0) 3 39 0.0022 0.9922
QAOA 4 (π=4, 0.1) 2 30 0.0019 0.9887
QAOA 4 (π=4, 0.1) 3 45 0.0015 0.9941

QAOA 8 (0, 0) 2 38.5 0.0028 0.9553
QAOA 8 (0, 0) 3 52.5 0.0024 0.9632
QAOA 8 (π=4, 0.1) 2 38.5 0.0023 0.9763
QAOA 8 (π=4, 0.1) 3 52.5 0.0034 0.9711

TABLE II. Results for the QAOA method for varying system
sizes and parameters with first-order Trotter formula. Here N, θ,
and m are the parameters of the simulation, and M is the number
of QAOA steps. The remaining columns give the CNOT gates per
qubit, the relative error of the ground state energy measurement,
and the ground state overlap.

Method N ðθ; mÞ M CNOT/qubit Rel. Err. E0

GS
overlap

QAOA 4 (0, 0) 2 30 0.0029 0.9798
QAOA 4 (0, 0) 3 45 0.0012 0.9928
QAOA 4 (π=4, 0.1) 2 30 0.0023 0.9855
QAOA 4 (π=4, 0.1) 3 45 0.0021 0.9871

QAOA 8 (0, 0) 2 49 0.0021 0.9679
QAOA 8 (0, 0) 3 73.5 0.0016 0.9856
QAOA 8 (π=4, 0.1) 2 49 0.0077 0.9732
QAOA 8 (π=4, 0.1) 3 73.5 0.0067 0.9789
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the results for different system sizes using the same QAOA
parameters obtained through simulated annealing on the
N ¼ 4 system for the ðθ; mÞ ¼ ð0; 0Þ case with three steps,
two of which are blocked while the last one is executed with
the full Hamiltonian.
The data presented indicates that blocked QAOA can

serve as a very cheap starting point for subsequent
optimizations or alternative state-preparation algorithms,
particularly when dealing with large values of N.

V. RODEO ALGORITHM

The recently proposed RA [32,47,48] is a promising
method that uses a stochastic cosine filter to isolate eigen-
states of a given Hamiltonian. It can be used to extract the
energy spectrum of a Hamiltonian, and it can also be used as
a state-preparation algorithm. One of its biggest advantages
is that it allows one to prepare a system in any eigenstate of
the Hamiltonian, not just the ground state.
The rodeo algorithm uses one or more ancilla qubits to

control the time evolution of the initial object state jψ Ii by
the object Hamiltonian H. In the general case, the M-cycle
RA uses a set of M ancilla qubits. However, for quantum
computers that allow midcircuit measurements, a single
ancilla qubit may be used repeatedly [47]. The algorithm
starts with all ancilla qubits in the same state e.g., j1i. A
Hadamard gate is applied to fully mix each ancilla qubit.
Then for the mth control/ancilla qubit, a controlled time
evolution e−iĤtm is applied to the object system, followed
by a phase rotation PðEtmÞ applied to the ancilla qubit. In
the end, a Hadamard gate is applied to each ancilla qubit,
and it is measured (see Fig. 5 for a gate representation of the
algorithm).
Let us consider a single rodeo cycle. Starting from the

initial state j1ijψ Ii, after performing one cycle of the RA
and inserting a complete set of energy eigenstates, the
system is in the state

1

2

X
j

hEjjψ Iið1 − e−iðEj−EÞt1Þj0ijEji

þ 1

2

X
j

hEjjψ Iið1þ e−iðEj−EÞt1Þj1ijEji: ð17Þ

The probability, as a function of E, of measuring the ancilla
qubit in the original state j1i is

Pj1iðEÞ ¼
X
j

jhEjjψ Iij2 cos2
�
½E − Ej�

t1
2

�
: ð18Þ

Thus, if we take random values of the evolution time tm, we
have a cosine filter for the energy, which can be tuned to
exponentially suppress eigenstates outside an energy range.
For large M, the spectral weight for any eigenstate with
Ej ≠ E is suppressed by a factor of 1=4M.
The RA can be used to extract the spectrum of the

Hamiltonian H. If we label the eigenstates of H as jEji,
we can define the initial-state spectral overlap function as
SðEÞ ¼ jhEjjψ Iij2 for E ¼ Ej and SðEÞ ¼ 0 for E ≠ Ej.
In practice, one runs the RA at some fixed energy E and
random value tm for each rodeo cycle. This is repeated with
a set of Gaussian random values for the times tm, and the
results are averaged over to get the value of S at E. The
function SðEÞ is constructed by repeating this procedure for
a range of values E. An example for the Schwinger model is
shown in Fig. 6.
The RA however has limitations for NISQ machines.

First, it requires an additional number of qubits, the ancilla,
that are not available for the simulation after the state is

TABLE IV. QAOA blocked with M ¼ 3 steps. The results for
the N ¼ 4 are obtained after parameter optimization; the results
for N ∈ f6; 8; 10; 12g have been computed using the same
optimal parameters for N ¼ 4.

N CNOT/qubit Rel. Err. E0 GS overlap

4 39 0.0003 0.9995
6 46.6 0.0022 0.9839
8 52.5 0.0021 0.9722
10 57.6 0.0022 0.9599
12 62.3 0.0020 0.9479

FIG. 5. Gate representation of the rodeo algorithm.

FIG. 6. Spectral overlap factors for the j10101010i initial state
from the rodeo algorithm.
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prepared. Furthermore, the stochastic values for the con-
trolled time evolution have to be chosen from a distribution
with a certain width σ. This unphysical parameter controls
the width of the cosine filters that are effectively applied.
If a too small value is chosen the filtering effect is not
sufficient to isolate the different peak corresponding to
distinct eigenvalues. But choosing a too large value
necessitates simulating large times with a time evolution
operator, increasing the necessary Trotter steps.

A. Rodeo algorithm for state preparation

The RA suppresses eigenstates whose eigenvalues differ
from E and thereby effectively amplifies any eigenstate
whose energy is close to E. This means the RA can be used
for state preparation.
If the exact energy Ek of the target eigenstate jEki is

known, then one simply performs some numberM of rodeo
cycles at the energy E ¼ Ek. In the end, if all ancilla qubits
are measured to be in the state j1i, then the object state is
jEki with a probability which ranges from the initial state
overlap probability jhEkjψ Iij2 when M ¼ 0 to 1 in the
limit of large M. If any ancilla qubits are measured to be
in the state j0i, then the state is discarded and one restarts
the algorithm. There are two probabilities to keep in
mind; the probability of measuring all ancilla qubits to
be in the state j1i, and the conditional probability that
the object state is jEki given that all ancillas are in the
state j1i. In the limit of large M, the first probability is
equal to the initial state overlap probability, and the
second is equal to one. The cost, in terms of gates and
circuit depth, of the RA for state preparation depends on
several factors including the initial state overlap with the
desired eigenstate, and the number of rodeo cycles M.
The controlled time evolution can be realized through
Toffoli gates, which extend CNOT gates to have two
control qubits. These in turn can be decomposed in a
series of six CNOT gates and single qubit rotations.
In general, the cost of the RA for our Schwinger
Hamiltonian, with first-order Trotterization, is then
6M½4ðN − 1Þ þ ðN − 1ÞðN − 2Þ�.
If the energy Ek of the target eigenstate jEki is not

known, then the RA can be used to scan for the precise
energy by trying a range of energies E as in Fig. 6. Once
the relevant peak is isolated in the spectral overlap
function, its precise location can be extracted using a
Gaussian fit as shown in Fig. 7. The algorithm is then
repeated at this energy.

B. Preconditioning the rodeo algorithm with QAOA

The RA efficiency greatly improves when the overlap of
the initial state with the desired state is large. In particular,
the number of required cycles in the RA and their total time
evolution length, and hence the overall length of the
algorithm, can be reduced. One can then use a state coming

from the blocked QAOA presented in Sec. IV B, which is
cheap to prepare, and use it as initial state for the RA.
The procedure is as follows. First, a classical optimiza-

tion of the blocked QAOA model is made on a small
system, in our case we used the N ¼ 4 Schwinger model,
the same of Table III. Secondly, the state coming from the
QAOA ansatz for a larger system is prepared. As seen in the
table, for the N ¼ 8 the overlap ≈96%, which is consid-
erably better as an initial guess when compared to the
alternating chain of spins up and down, see Fig. 8. Finally,
one can perform just three cycles of the RA with a small
time evolution step, in practice, we restrict the random
times tm to have a root-mean-square value of trms¼1;2, and
perform a scan of the energies close to the ground state and
use the fitting procedure outlined in Sec. VA. Keeping the
time short is crucial to reduce the number of Trotter steps
required to perform the controlled time evolution. In
particular, since the values of tm are stochastic, we fix a
value for the time steps of δt ¼ 0.25, with the last step
being shorter depending on the exact value of tm.

FIG. 7. Gaussian fit to the data of the ground state peak from
Fig. 6.

FIG. 8. Comparison of the eigenstate overlaps between the
QAOA ansatz and the simple alternating spin initial state.
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As seen in Fig. 9, the ground state energy can be
determined with a good degree of accuracy with very
few cycles and a short time evolution.
The advantage of combining the blocked QAOA and the

RA is that one can perform the classical hybrid optimiza-
tion for large systems in QAOA and correct for the error
coming from the mistuned parameters using the RA, which
in turn benefits in efficiency from the improved initial
ansatz. The total algorithm for the blocked QAOA pre-
conditioned RA for N ¼ 8 cannot be estimated exactly
as the length depends on the random choices for the
various tm. However, with trms ¼ 1 and δt ¼ 0.25 and 3
cycles one can expect that on average the CNOT count will
be on the order of 12 time evolution steps plus the initial
QAOA preconditioning. Considering the decomposition
of the Toffoli gates, we find that on average the total count
of CNOT gates per qubit is 661, which corresponds to
75 adiabatic steps, while reproducing the ground state with
99.5% accuracy. It should be noted that this procedure
retains the requirement to check the values of the ancilla
qubits of the RA to determine whether the state prepared is
valid or not.

VI. SUMMARY AND CONCLUSIONS

In this paper, we explore efficient quantum state prepa-
ration algorithms for the Schwinger model with a theta
term, focusing on ASP, the QAOA, and the RA. We have
analyzed these algorithms based on their efficiency, scal-
ability, and quantum resource requirements, with particular
focus given to the length of the algorithms as measured in
terms of the total number of two-qubit gates, as this is a
useful metric for their performance on NISQ machines.
While ASP has its strength in its simplicity and inter-

pretability, it requires many time-evolution steps to reach
good accuracy as it is bounded by both numerical dis-
cretization in the size of the steps and by the adiabatic

theorem for the total time of the evolution. We have found
that choosing different discretizations for the size of the
time-evolution steps can lead to improved accuracy, but that
is not a significant improvement as the overall scaling is
the same.
The QAOA produces a short algorithm with high

precision, but it requires a classical optimization step which
can be extremely costly and doesn’t scale with the system
size. We have implemented a blocked ansatz for the QAOA
that enables scaling the system by classically optimizing
the parameters for a small system and reusing them for
larger ones, though the precision decreases with the scaling.
The RA excels in preparing any eigenstate, not just the

ground state. Its success depends on the overlap between
the initial and target states, which can be optimized using
other algorithms. We find that combining blocked QAOA
with the RA provides the best results. Blocked QAOA
efficiently prepares a high-quality initial state, which
enhances the performance of the RA by reducing the
number of required cycles and improving the accuracy
of the state preparation. For the 8-site system, we find that
our procedure returns states that have 99.5% overlap with
the true ground state with the equivalent CNOT gate counts
of just 75 adiabatic steps.
The combination of blocked QAOA and the RA presents

a scalable and resource-efficient method for state prepara-
tion in quantum simulations of the Schwinger model.
This hybrid approach minimizes gate counts and classical
optimization complexity, making it well-suited for larger
systems and NISQ-era quantum devices. The results
demonstrate promising directions for future research in
quantum algorithms for quantum field theory simulations,
paving the way for applications in more complex models.
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