001049564 001__ 1049564
001049564 005__ 20251223155943.0
001049564 0247_ $$2doi$$a10.1145/3748815
001049564 0247_ $$2ISSN$$a0098-3500
001049564 0247_ $$2ISSN$$a1557-7295
001049564 037__ $$aFZJ-2025-05368
001049564 082__ $$a004
001049564 1001_ $$00000-0002-3294-4650$$aMayani, Sonali$$b0
001049564 245__ $$aA Massively Parallel Performance Portable Free-Space Spectral Poisson Solver
001049564 260__ $$aNew York, NY$$bACM$$c2025
001049564 3367_ $$2DRIVER$$aarticle
001049564 3367_ $$2DataCite$$aOutput Types/Journal article
001049564 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1766501243_23081
001049564 3367_ $$2BibTeX$$aARTICLE
001049564 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049564 3367_ $$00$$2EndNote$$aJournal Article
001049564 520__ $$aVico et al. suggest a fast algorithm for computing volume potentials, beneficial to fields with problems requiring the solution of the free-space Poisson’s equation, such as beam and plasma physics. Currently, the standard is the algorithm of Hockney and Eastwood, with second order in convergence at best. The algorithm proposed by Vico et al. converges spectrally for sufficiently smooth functions, i.e., faster than any fixed order in the number of grid points. We implement a performance portable version of the traditional Hockney-Eastwood and the novel Vico-Greengard Poisson solver as part of the Independent Parallel Particle Layer (IPPL) library. For sufficiently smooth source functions, the Vico-Greengard algorithm achieves higher accuracy than the Hockney-Eastwood method with the same grid size, reducing the computational demands of high-resolution simulations since one could use coarser grids to achieve them. Additionally, we propose an improvement to the Vico-Greengard method which further reduces its memory footprint. This is important for GPUs, which have limited memory, and should be taken into account when selecting numerical algorithms for performance portable codes. Finally, we showcase performance through GPU and CPU scaling studies on the Perlmutter (NERSC) supercomputer, with efficiencies staying above 50% in the strong scaling case. To showcase portability, we also run the scaling studies on the Alps supercomputer at CSCS, Switzerland and the GPU partition of the Lumi supercomputer at CSC, Finland.
001049564 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049564 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049564 7001_ $$00009-0004-5772-6109$$aMontanaro, Veronica$$b1
001049564 7001_ $$00000-0003-3326-4785$$aCerfon, Antoine$$b2
001049564 7001_ $$00000-0002-7842-0051$$aFrey, Matthias$$b3
001049564 7001_ $$0P:(DE-Juel1)195613$$aMuralikrishnan, Sriramkrishnan$$b4
001049564 7001_ $$00000-0002-7230-7007$$aAdelmann, Andreas$$b5$$eCorresponding author
001049564 773__ $$0PERI:(DE-600)2006421-4$$a10.1145/3748815$$gVol. 51, no. 3, p. 1 - 23$$n3$$p1 - 23$$tACM transactions on mathematical software$$v51$$x0098-3500$$y2025
001049564 8564_ $$uhttps://juser.fz-juelich.de/record/1049564/files/3748815.pdf$$yRestricted
001049564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195613$$aForschungszentrum Jülich$$b4$$kFZJ
001049564 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049564 9141_ $$y2025
001049564 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001049564 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001049564 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001049564 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-18
001049564 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001049564 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001049564 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001049564 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACM T MATH SOFTWARE : 2022$$d2024-12-18
001049564 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001049564 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001049564 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001049564 920__ $$lno
001049564 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001049564 980__ $$ajournal
001049564 980__ $$aEDITORS
001049564 980__ $$aVDBINPRINT
001049564 980__ $$aI:(DE-Juel1)JSC-20090406
001049564 980__ $$aUNRESTRICTED