
NEOPIC: A Neural Operator Framework for Particle-based Kinetic Plasma
Simulations
Sriramkrishnan Muralikrishnan1, Michael Bussmann2, Paul Gibbon1, Jeffrey Kelling2

1 Forschungszentrum Jülich GmbH, Germany, 2 Helmholtz Zentrum Dresden-Rossendorf, Germany

Motivation

Kinetic plasma simulations: Nuclear fusion, Particle accelerators

Source: iter.org
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trace shown in Fig. 2a(iv) evidences seeded FEL operation, following 
the prediction of ref. 58.

The fundamental mechanism leading to this redshift is illus-
trated in Fig. 3. In a seeded configuration (Fig. 3a), the first step of 
the FEL process is energy exchange between the seed and electron 
beam at the resonance wavelength. As both the seed wavelength and 
the electron-beam energy are time-dependent, the resonant con-
dition λseed(t) = λR(t) can only be met at one longitudinal position, t0  
(Fig. 3b and Methods). This local energy exchange at t0 leads to an energy 

and further density modulation of the electrons at λseed(t0) (or λR(t0)), 
expected to be followed by a coherent emission at the same wavelength. 
However, if, at the scale of one modulation period, the electrons’ energy 
varies substantially, which is the case due to the strong electron-beam 
chirp, the initial density modulation period is stretched by the disper-
sion experienced along the undulator. This leads to a lengthening 
of the coherent emission wavelength (Fig. 3c), that is, a redshift58. 
According to this model, the final seeded FEL wavelength is expected  
to behave as
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Fig. 1 | Experimental layout. The LPA is driven by the DRACO laser (for more 
details on the DRACO footprint, see ref. 55). The electron beam generated in the 
LPA is first characterized using a removable electron spectrometer and then sent 
through a triplet of quadrupoles (QUAPEVAs) for beam transport to the undulator 
and FEL radiation generation. ICTs, integrated current transformers. Non-labelled 
elements: dipoles, red blocks; optical lenses, blue disks; mirrors, grey circled 

black disks. a, Particle-in-cell simulation rendering of the accelerating structure 
driven by the laser pulse (red); the electron cavity sheet formed from the plasma 
medium (light blue) is in purple and the accelerated electron bunch in green. b–d, 
Electron-beam transverse distribution measured at the LPA exit (b), the undulator 
entrance (c) and the undulator exit (d).
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Fig. 2 | Spatio-spectral distributions of the radiation at the undulator exit. 
a,b, Spatio-spectral distributions for an undulator gap of 4.3 mm (Ku = 2.35) and 
an optimum delay of +0.1 ps: experimental measurements (a) and simulation (b) 
of SR only (i), seed only (ii), SR with seed (iii) and the difference between the (iii) 
and (ii) images (iv). c, On-axis spectral intensity I extracted along the red line in a 
and blue line in b with integration over ∆y = 0.3 mm and median filtering of the 
simulated profile. In a,b,c(i–iii), distributions are normalized to their maximum 

intensity and displayed in logarithmic (dB) scale. In a,b,c(iv), the distributions 
are displayed in a linear scale. Simulation parameters (electron-beam parameters 
given at the source point): Ee = 188.8 MeV, charge = 150 pC, σz = 2 µm (r.m.s.), 
normalized emittance #x, y = (1.5; 1.0) mm mrad, divergence σ

x

′

, y

′

 = (1.5; 1.0) mrad 
(r.m.s.), σe = 5% (r.m.s.), R56 = −1.8 mm, QUAPEVA 2 strength detuned by −2%, 
Eseed = 0.5 µJ, λseed = 269 nm, ∆λseed = 3.9 nm (FWHM) and ∆Tseed = 1.0 ps (FWHM).

Source: M. Labat et al., Nature Photonics, 2023

Particle-in-cell (PIC): Method of choice for kinetic plasma simulations
Issues:

Computational cost: large number of grid points (O
(
1011

)
), particles (O

(
1012

)
) and

time steps (O
(
105

)
) for high-fidelity simulations

Numerical artifacts from grid-based solvers

Many-query scenarios: Still unreachable with exascale supercomputers

Need cheap surrogate models which still capture essential physics

Particle-in-Neural Operators (PINOP)

Neural Operator:
Infer electric and
magnetic fields

from the particles
positions and velocities

PUSH:
Update particles

positions and velocities

INITIALIZATION:
Initialize particles positions,

velocities, and charges

Particle equations:

dxk
dt

= vk,

dvk
dt

=
qk
mk

(E(xk, t) + vk × B(xk, t)).

Field equations:

∇× B = µ0 (J + ϵ0∂tE) , ∇ · E =
ρ

ϵ0
,

∂tB +∇× E = 0, ∇ · B = 0.

ρ(x, t) =
∑
k

qkS(x− xk), J(x, t) =
∑
k

qkvkS(x− xk).

Steps:

Particle pusher: Same as in particle-based methods

Electric and magnetic fields: Obtain from a neural operator instead of mesh-based or tree-based
(mesh-free) field solvers by approximating the map G : (x, v) → (E,B)

Advantages:

Not constrained by Debye length and Courant-Friedrichs-Lewy time stepping restrictions

Can use data from a variety of particle-based methods (discretization invariance)

Can be trained and tested with different numbers of particles (resolution invariance)

Can be interfaced with any particle-based production/community code

Utilizes the strengths of both particle methods and AI

Preliminary results

2D-2V electrostatic Landau damping: Trained with 50K particles and inference with 500K particles using Fourier neural operator in PINOP

Training data 
1600 time steps, 50k particles 

subsampled from 100K

PIC PINOP PINOP: 80X larger time stepsize than training PINOP: Different initial condition

Project Outlook

Investigate other neural operator architectures (e.g. DeepONet, Graph neural operators)

Incorporate physics to help with the generalization, long time rollouts and data requirements

PINOP for electromagnetic kinetic plasma simulations
HPC strategies for the PINOP scheme

Domain decomposition
Data reduction strategies
Interface to production particle codes
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