

Let's rock

Classification of Balance Recovery Steps in the Wild Application to Punk Rock Concerts.

Thomas Chatagnon¹, Anne-Hélène Olivier², Ludovic Hoyet², Julien Pettré², and Charles Pontonnier² (1) IAS-7: Civil Safety Research, Forschungszentrum Juelich, Juelich, Germany (2) Univ Rennes, Inria, CNRS, IRISA, France

How to label and study recovery steps following physical interactions in an ecological crowded environment?

Context

- Physical interactions are common in crowed situation (e.g., mass gatherings, evacuations...). [1]
- Physical interactions can lead to a loss of standing balance. [2]
- Multiple balance recovery strategies are used to avoid falling in this context. [3]

Figure 1: Aerial view of the concert venue where the experiment took place.

Method

Unified classification method for first recovery steps after quiet standing. Labelling of recovery steps based solely on body kinematics. [4]

Hip or Ankle Strategy

No Step (NS)

Backward Step (BS)

Loaded Side Step (LSS)

Unloaded **Medial Step** (UMS)

Unloaded Crossover Step (UCS)

Lateral perturbation

Classification of first recovery steps after quiet standing following external perturbation from different directions [4] DOI: 10.1016/j.jbiomech.2025.112639

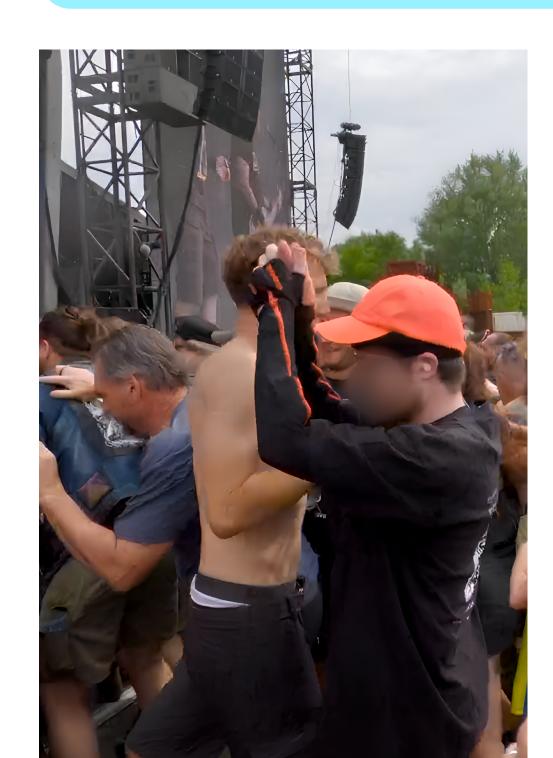


Figure 2: Participant clapping to indicate they stood in a balance, quiet position.

Proof of Concept - Studying Balance recovery in the wild.

- **♦ 3 Participants** (2M, 1F, 22-37yo).
- ◆ Social Context: Punk Rock concert (physical interactions socially accepted).
- ◆ **Terrain**: Flat dry paved ground Figure 1.

Protocol

- 1) Stand in a balanced position with feet no larger than the hips.
- 2) Clap hands (to indicate that step one was completed) Figure 2.
- 3) Recover from a random physical interaction Figure 3.
- 3 bis) Clap hands twice to indicate voluntary steps.

Data Processing

- ◆ Motion capture: Xsens (240Hz).
- ◆ Biomechanical Model (44 DoF, 18 segments). [5]
- ◆ Labelling of first recovery step using a Unified classification method.

Figure 3: Participant recovering balance after receiving a perturbation by a concert-goer.

Results

Classification method

- ◆ Labeling of the first recovery steps without prior information about perturbations.
- Allows comparison between laboratory and in-situ balance recovery experiments.

Proof of concept

- ◆ Perturbations coming from all possible directions Figure 4.
- ◆ Smaller and faster recovery steps than in laboratory experiments Figure 5. [6, 7]
- ◆ Predictive model based on classic push recovery paradigm performed with more than **76% accuracy, except for LSS** - Figure 6. [4, 7]

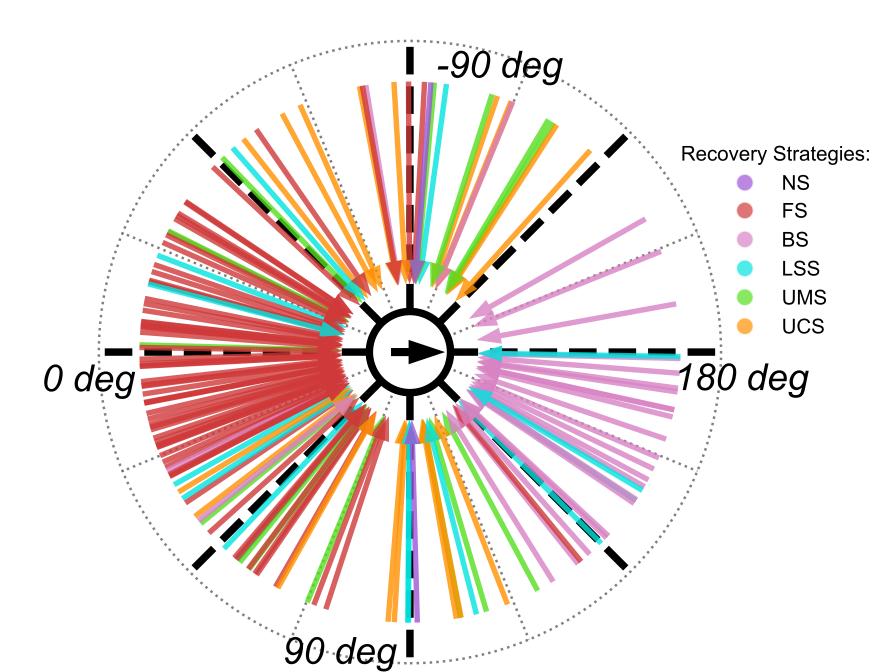


Figure 4: Representation of the estimated perturbation directions (i.e., direction of the CoM velocity before step initiation). Arrows are coloured by recovery strategies.

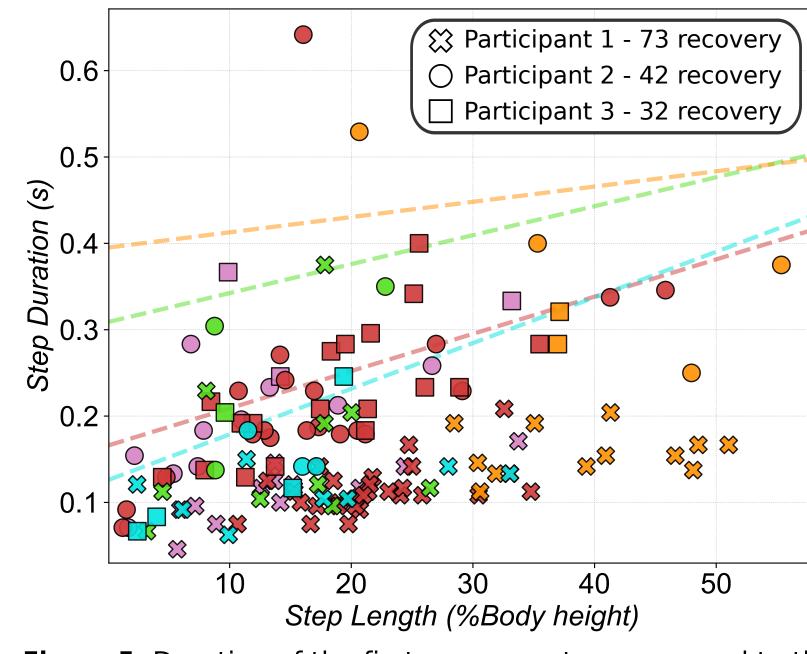


Figure 5: Duration of the first recovery step compared to the step length. The dashed lines correspond to regression obtained from single individuals in controlled laboratory environments. [7]

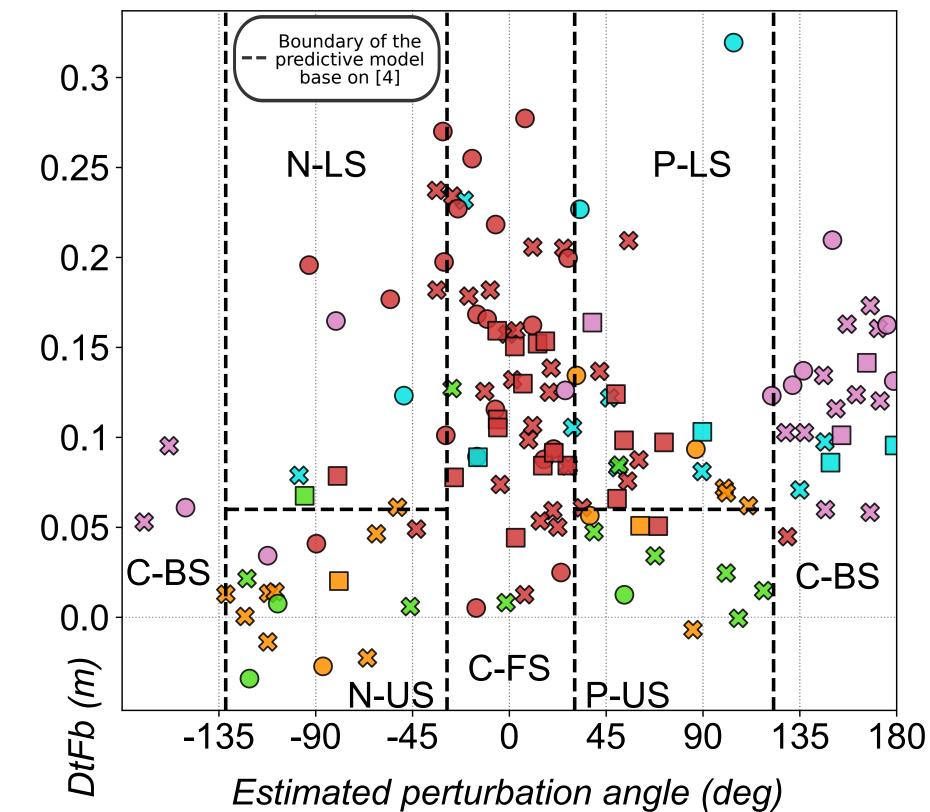


Figure 6: First recovery steps can be separated based on the perturbation angle and the distance between the CoM and the boundary non-stepping foot at step initiation (DtFB).

Perspectives

- ◆ Role of the upper body during recovery.
- ◆ Involve more participants.
- ◆ Repeat the protocol in different social contexts.

Member of the Helmholtz Association

- [1] M. Zhou, M. Wang, J. Zhang, How are risks generated, developed and amplified? Case study of the crowd collapse at Shanghai Bund on 31 December 2014, IJDRR, doi: 10.1016/j.ijdrr.2017.06.013 (2017). [2] A. Sieben, A. Seyfried, Inside a life-threatening crowd: Analysis of the Love Parade disaster from the perspective of eyewitnesses, Saf. Sci., doi: 10.1016/j.ssci.2023.106229 (2023).
- [3] B. Maki, W McIlroy, The role of limb movements in maintaining upright stance: the "change-in-support" strategy, Phys. Ther., doi: 10.1093/ptj/77.5.488 (1997) [4] T. Chatagnon, A. Olivier, L. Hoyet, J. Pettré, C. Pontonnier, Classification of first recovery steps after quiet standing following external perturbation from different directions, J. Biomech, dot: 10.1016/j.jbiomech.2025.112639 (2025)
- [5] A. Muller, C. Pontonnier, P. Puchaud, G. Dumont, CusToM a Matlab toolbox for musculoskeletal Simulation, JOSS, doi: 0.21105/joss.00927 (2019). [6] T. Chatagnon, S. Feldmann, J. Adrian, A. Olivier, C. Pontonnier, L. Hoyet, J. Pettré, Standing balance recovery strategies of young adults in a densely populated environment following external perturbations, Saf. Sci., doi: 10.1016/j.ssci.2024.106601 (2024). [7] T. Chatagnon, Standing balance recovery strategies following external perturbations: a multiscale approach with applications to dense crowds. Phd Thesis, url: https://theses.hal.science/tel-04470216 (2023).