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In PEM fuel cells, oxygen is transported through three media: the channel, the gas diffusion layer, and
the cathode catalyst layer. Transport in each medium has its own characteristic frequency, so three oxygen
transport peaks are expected in the distribution of relaxation times (DRT) spectrum. However, a single transport
peak has typically been demonstrated in the literature. In the high-frequency range, DRT spectra of PEMFCs

exhibit multiple peaks of an unknown nature. We show that these inconsistencies and phantom peaks arise due
to poor description of the oxygen and proton transport processes by the Debye kernel used in the DRT. Further,
it is suggested to replace the Debye kernel with the composite kernel, which better describes the oxygen and
proton transport processes. The Distribution of Transport Times (DTT) transformation is illustrated using two
model and one experimental impedance spectra.

1. Introduction

The unique properties of Electrochemical Impedance Spectroscopy
(EIS) and advances in the electronic instrumentation have led to the
widespread use of this non-invasive and operando method of PEM
fuel cell characterization. This progress has been further stimulated
by the development of a new technique for spectrum decoding: the
Distribution of Relaxation Times (DRT) [1-6]. The apparent simplicity
and availability of software for numerical DRT calculations [7] (see
also [8]) has rapidly made the DRT more popular than the long-known
equivalent circuit method. Today, the DRT is a “working horse” for
PEMFC spectra analysis in the fuel cell community [9-16].

The DRT is an expansion of the cell impedance over an infinite
series of parallel RC-circuit impedances [2,5]. This choice of the
basis function (kernel) would have been justified if the cell impedance
were largely dominated by faradaic processes. Indeed, the faradaic
impedance of the cathode catalyst layer (CCL) is well described by the
parallel RC—circuit [17].

However, a significant contribution to the cell impedance give
the oxygen and proton transport, which are poorly described by the
RC—circuit kernel. A well-known example is the Warburg finite-length
(FL) impedance [17,18], which is often used to describe oxygen trans-
port in porous layers:
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The Nyquist spectrum of Eq. (1) with = = 1 is shown in Fig. 1a. Fig.
1b shows the numerical DRT spectrum calculated using the imaginary
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part of the impedance in Fig. 1a. As can be seen, only the largest
DRT peak indicates the maximum of the imaginary part, while all
of the other peaks are artifacts due to poor selection of the basis
function/kernel (Fig. 1b). Not surprisingly, the DRT of a real fuel cell
impedance may include a number of high-frequency peaks of unknown
origin [11,19,20].

Oxygen in a PEMFC is transported though the channel and further
through the gas diffusion and catalyst layers. Generally, each element in
this chain has its own characteristic frequency of oxygen transport, and
we may expect three transport peaks in the DRT spectrum. However,
upon processing of experimental spectra, typically a single peak is
attributed to the oxygen transport [9,21,22]. Furthermore, the DRT of
the synthetic impedance calculated from the detailed transient PEMFC
performance model also did not allow to separate all of the oxygen
transport peaks [10]. In addition, the proton transport in the CCL is
also poorly described by the Debye kernel, which is another source of
phantom high-frequency peaks in the DRT spectrum (see below).

Song and Bazant [23] and further Quattrocchi et al. [24] developed
a Distribution of Diffusion Times (DDT) technique. The method is
suitable for the deconvolution of the diffusion and/or the diffusion—
reaction impedance of porous electrodes modeled as a system of par-
allel pores. However, the DDT technique is designed to characterize
the reactant transport in a single porous electrode and it can hardly
be applied to describe the oxygen transport through the whole PEMFC
transport chain.
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Fig. 1. (a) The Nyquist spectrum of the Warburg finite-length impedance, Eq. (1) with
7 = 1. (b) Solid blue line — the numerical DRT spectrum computed using the imaginary
part of Zy,, solid points — Im (Zy, ), open circles — Im (Z,,) reconstructed using the
calculated DRT.

In this work, we separate the typical for PEMFC impedance fre-
quency range of 0.1 Hz to 10 kHz into the low-, medium- and high-
frequency domains. We construct a composite kernel, which transforms
to the transport layer kernel in the LF domain, to the Debye kernel in
the medium-frequency domain, and to the proton transport kernel in
the HF domain. Using the two model-based synthetic impedances and
an experimental impedance of a real fuel cell, we show that such a
Distribution of Transport Times (DTT) allows capturing the peaks due
to oxygen transport in the GDL and/or CCL, while the standard DRT
misses these peaks. Furthermore, the DTT exhibits an unambiguous
proton transport peak, while the DRT returns two high-frequency peaks
of unknown origin.

2. Model
2.1. Impedance of a transport (gas diffusion) layer

The low-frequency part of the composite kernel for the DTT results
from the problem of the oxygen transport impedance in the transport
layer (TL) connected to the CCL (Fig. 2). The oxygen diffusion through
the TL is described by the Fick’s equation
dcy, dcy
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where x is the coordinate through the cell (Fig. 2), ¢, the oxygen
concentration in the TL, D, the TL oxygen diffusivity, j, the current
density, L the TL thickness, /, the CCL thickness, and ¢, the oxygen
concentration in the channel.

To calculate the transport impedance, we need to relate the oxygen
concentration and the ORR overpotential. This relation can be obtained
from a simplest transient model for the catalyst layer performance.
Neglecting the proton and oxygen transport losses in the catalyst layer,
we write the proton charge conservation in the form

on  0j . ¢ n
(eI Ay 1 3
ot T ox l*(c,ef>exP(b) ®
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Fig. 2. Schematic of the cathode side of a PEM fuel cell. The transport layer represents
the gas diffusion layer. The TL is attached to the catalyst layer with the finite (non-
negligible) double layer capacitance C,,.
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Fig. 3. The typical shapes and the characteristic frequencies of the transport and
Warburg finite-length impedance.

where C,; is the double layer capacitance (F cm~2), » the positive
by convention cathode side overpotential, j the local proton current
density in the CCL, ¢ and c,,, are the local and reference oxygen
concentrations, i, the ORR exchange current density, and b the ORR
Tafel slope.

Due to negligible transport losses in the CCL, the overpotential is
nearly independent of x and we can integrate Eq. (3) over x € [0,/,].
Setting x =/, in the resulting equation, we find

on . . ¢ n
Cd,l,E—JO:—z*l, (ﬁ)exp<z> @
re

where ¢, is the oxygen concentration at the CCL/TL interface. Lineariza-
tion and Fourier-transform of Egs. (2), (4) leads to the TL impedance
Zrp [25,26]:

Li, tanh (\/isz/Db)
Zryp = < )
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Eq. (5) is proportional to the product of the Warburg FL impedance
3 tanh(\/isz/D,,)
Zy = ——— (6)
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and the parallel RC—circuit impedance representing the faradaic pro-
cess in the CCL, to which the TL is attached:

)

1
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Thus, the TL transport impedance Z;; is not equivalent to the War-
burg FL impedance. Formally, reduction of Eq. (5) to the Warburg
impedance corresponds to the limit of zero double layer capacitance: in
this case, Zz reduces to the pure resistive term and the TL impedance,
Eq. (5) transforms to the Warburg FL one. The Nyquist spectra of Z,
and Z; are illustrated in Fig. 3.
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2.2. Composite kernel

Eq. (5) suggests the kernel for the transport layer impedance [27]

tanh Viwt
Viwr (1 + iwt) ’

The characteristic frequency of oxygen transport in the GDL is typically
in the range of 1 to 10 Hz; it is, thus, reasonable to use Eq. (8) in
expansion of the low-frequency part of the PEMFC spectrum.

Ky = (8)

The characteristic frequency of the faradaic impedance is typically
belongs to the medium frequency range of 10 to 100 Hz. The faradaic
impedance is well described by the Debye kernel and hence in the
medium frequency range, the composite kernel should reduce to the
Debye one, Eq. (9):

1

Kp(r,0) = ———
o @) 1+iwt

€©)

The high-frequency component of the cell impedance is due to the
proton transport in the CCL, which is best described by the following
kernel [17,28]:

P B,

Viwt tanh Viwr
In the high-frequency domain, the composite kernel should, therefore,
reduce to the proton transport kernel K,,, Eq. (10).

(10

The proposed composite kernel K, combines the three aforemen-
tioned kernels in one:

tanh (a\/iw_r)

K (w,7)= 7 an
aVior (1 +iwt)!-F (\/ iwt tanh \/iw‘r)
where « and g are the step functions:
— 0, z< Ta _ I, < Tp
a(z,7,) = {1’ . Bz, 7p) = {0’ > 12

with 7; < 7,. At @ — 0, we have tanh (a\/i(m—) /(aViwr) - aVier/

(a\/ﬁ) = 1. With « = 1 and g = 0, the kernel (11) reduces to the
Ky kernel, Eq. (8). With « = 0 and g = 0, Eq. (11) transforms to
the Debye kernel K. With « = 0 and g = 1, Eq. (11) reduces to the
proton transport kernel K, Eq. (10). Thus, the Debye kernel (medium-
frequency) domain on the frequency scale is given by 1/(2z7,) <
f £ 1/Qxzp). The typical low-, medium-, and high-frequency domains
together with the respective K, values are illustrated in Fig. 4.

With the composite kernel Eq. (11), the equation for the dimension-
less DTT y(z) is

)

Z(@) =Ry + Rpy / K. (w0, 7)y(r)d(In7) 13)

where R, is the high-frequency (ohmic) cell resistance and R, is the
polarization resistance. This equation can also be written in the form

Int,
Z(w) = Ry, + Rpol</ ! Ky (w,7)y(r)d(In7)

0

Inz,
+/ Kp(w,7)y(r)d(In7)
1

nzg

[

+ Ky (w,7)y(r)d(n T)) 14)

Inz,

which explicitly shows the kernels K,, K, and Ky, for the high-,
medium-, and low-frequency domains, respectively. It should be em-
phasized that the proposed method only requires setting the positions
of the a- and f-steps on the time scale or, equivalently, on the frequency

scale. This is done using an interactive plot, as discussed below.

Electrochimica Acta 539 (2025) 147063

20
Composite kernel
- 15 channel
= tanh (Viwt) 1 1
a NP rerrTe 1+iwt  /; [i
@ Viwt(1+iwT) ViwttanhViwt
(]
= 10 1 ORR B S RLRLRLet)
£ ! :
[%] !
5 GDL ! i
£ i B
A 0.5 A i praton
107t 10° 10t 102 10° 10*
Frequency / Hz

Fig. 4. The typical distribution of transport times of a PEM fuel cell and the frequency
domains with the composite kernel K, equations indicated therein. In the LF domain,
K. reduces to the transport layer kernel, Eq. (8) (red formula). In the medium
frequency range, K, reduces to the Debye kernel, Eq. (9), (black equation). In the
high-frequency range, K, is represented by the proton transport kernel K,, Eq. (10),
(magenta equation). The plots of the a— and p-functions are shown by the red dashed
and dotted magenta lines, respectively.

2.3. Numerical method for DTT calculations

The numerical method originally developed to solve the standard
DRT problem with the Debye kernel K, (see Appendix in [8] and the
references therein) has been modified and extended for the solution
of Eq. (13) as follows. The modified method can solve the real part
of Eq. (13), the imaginary part of this equation, or both the real and
imaginary parts of Eq. (13) simultaneously. Depending on experimental
conditions, either Z,,, or Z;, could be less noisy, and that part should
be used for the DTT calculation, otherwise both the real and imaginary
parts could be used.

Consider first the real part of Eq. (13)

Z.,— Ry, o
S / Re (K, (@, 7)) y(r)d(In7) 15)

Rpol o

We approximate the integral in Eq. (15) on a log-scale grid
61n(r,) = In(z, ;) —In(z,), 7,=1/0, (16)

using the trapezoidal rule. This results in a linear system of equations

-

Z _ —R

Ay=b, b=re — au
Rpol

where y = [, ....yn1"s b =11y .byl”. Zpe = [Zyeys oo s Zyoy |7 are

the column vectors of the unknown function, the right side, and the real
part of impedance, respectively. The matrix A components are given by

Apn =Re (K (@, 7,)) 8 In(z,,). (18)

In a Python code it is convenient to store K (®,,, 7,) as a complex-valued
matrix, e.g., K. The real part Re (K,(w,,.7,)) is computed simply by
applying the operation K[m, n].real.

Next, Eq. (17) is transformed into the Tikhonov regularization form

(ATA + 471) y = ATb (19)

where AT is the transposed A, I is the identity matrix, and A is
the regularization parameter obtained by the L-curve method [29].
Eq. (19) is solved using a non-negative least-squares algorithm [30]
which returns the vector y satisfying to

argmin, {(ATA+ 4;1)y —ATb}, y>0. (20)
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Table 1
The cell operating and model parameters.
Ref. [31] Ref. [32] Ref. [33]

Anode/cathode feed H,/air H,/0,
Current density, A cm~2 0.1 1.0 1.0
Cathode relative humidity 0.5 0.7
Cathode pressure, bar 1.467 1.0
Cell temperature, K 273 + 80
Cathode flow stoichiometry 2 (air) >10 (0,)
CCL thickness, pm 10 8.2
GDL thickness, pm 230 150
Tafel slope, mV/exp 30 -
CCL proton conductivity, mS cm™ 10 -
DL capacitance, F cm=3 20 -
ORR exchange current density, A cm™ 1073 -
GDL oxygen diffusivity, cm? s™! 0.02 -
CCL oxygen diffusivity, 10~ cm? s7! 1.0 5.0 -

Here, y > 0 means that all the components of y must be non-negative.
Eq. (20) is solved using the nnls procedure from the SciPy library.

Modification of the algorithm for the imaginary part of the
impedance is quite obvious: in Eq. (17) b = Z,,,/ R,,, and in Eq. (18),
Re (K (®,,, 7,)) must be replaced with Im (K, (@,,, 7,)):

App=1Im (K (@,.7,)) 51n(z,). 21

If necessary, both the real and imaginary parts of impedance can
be taken into account. In this case, the matrix A has 2N rows and N
columns. The first N rows are equivalent to Eq. (18), and the last N
rows are equivalent to Eq. (21). The vector b has the dimension 2N
with the first N elements equal to (Z,, — Ry)/R,, and the last N
elements given by Z,,/ R,,. Since ATA is the N x N matrix and the
vector ATb is the vector with N elements, Egs. (19), (20) do not change.

In all the examples below, the typical value of A; lies in the range
of 1074 to 1073. A delicate issue is the selection of the frequency
position for the a— and p—function steps. Thanks to the fast algorithm
for Eq. (20) solution, this selection can be done interactively. It is worth
noting that in the code, a vanishingly small value of « is used instead
of zero to avoid a zero division error.

3. Results and discussion
3.1. DTT and DRT spectra of a low-current analytical PEMFC impedance

A good test for the method proposed is comparison of the DTT and
DRT spectra for the analytical impedance of a PEM fuel cell [31]. The
model [31] includes oxygen transport in the channel, gas-diffusion and
catalyst layers, the proton transport and faradaic reaction in the CCL.
The model is constructed assuming that the cell current density is small,
i.e., the variation of the static cathode overpotential through the CCL
depth is small.

The Nyquist spectrum of the impedance [31] calculated for the cell
current density of 100 mA cm~2 and the parameters in Table 1 is shown
in Fig. 5a. The spectrum consists of two arcs, of which the rightmost
(low frequency) one is due to the oxygen (air) transport in the cathode
channel (the channel arc). The large arc represents the faradaic and
proton transport in the CCL impedance, and the impedances due to
the oxygen transport in the GDL and CCL. It is the task of the DTT
to separate these processes.

Fig. 5b and c show the DRT and DTT spectra, respectively. The
DRT spectrum consists of the four peaks, which are due to the oxygen
transport in the channel (the “channel” peak), the faradaic processes
(the “ORR” peak) and the proton transport (two “proton” peaks, Fig.
5b).

On the other hand, the DDT spectrum with the a and p steps at
fo =9 Hz and fj; ~ 12 kHz, respectively, resolves the peak due to the
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Fig. 5. (a) Blue points— the analytical Nyquist spectrum calculated using the
model [31] for the cell current density of 100 mA ¢cm~2 and the parameters in Table
1. Red open circles - the spectrum reconstructed (fitted) from the DTT. (b) The solid
line - the classic DRT y(f) calculated with the imaginary part Z,, of impedance in
(a). (c) The Distribution of Transport Times. The red dashed line — the a(f)-function
with the step frequency f, ~ 10 Hz. The dotted magenta line is the p-function with
the step frequency f; ~ 1 kHz.

oxygen transport in the CCL (the “CCL” peak, Fig. 5c). The nature of
the “CCL” peak in Fig. 5c has been confirmed by calculating the DTT
with the twice lower CCL oxygen diffusivity D,, = 0.5-10~*. This gave
approximately twice larger area under the “CCL” peak.

A comparison of the Nyquist spectra fitted by the DRT (not shown)
and DTT (Fig. 5a) shows a better quality of the DTT fitting, particularly
of the channel peak. Formally, the DTT provides three times smaller
residual ||Z — Z/|| as compared to the DRT.

Both the DRT and DTT miss the peak due to the oxygen transport in
the GDL. At low cell current density, the GDL transport impedance is
small and none of the methods can detect it. Further, the DRT spectrum
shows the two high-frequency peaks, which arise due to the poor
description of the proton transport impedance by the Debye kernel. On
the contrary, the DTT spectrum exhibits a single proton transport peak
(Fig. 5¢).
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Table 2
A comparison of the DTT, DRT and theoretical characteristic frequencies and resistivities of the processes in the cell cathode for the spectra in
Fig. 5b,c.
Channel, O, GDL, O, ORR CCL, O, CCL, proton
transport transport transport transport
DRT peak frequency, Hz 0.536 - 22.7 - 602, 3920
DTT peak frequency, Hz 0.677 - 18.0 57.9 1215
Theoretical frequency, Hz 0.274 15.3 26.5 46.2 855
. 3.3j, 2.54D, Jo 2.54D,, Jo 171s,
Equation " 8xFhe,,, In(1 = 1/2) 2l 22Cylb 2wl 8k, Cul?
Reference Ref. [34] Ref. [18] Ref. [17] Ref. [35] Ref. [28]
DRT peak resistivity, mQ cm? 103 - 330 - 17.3 + 12.2
DTT peak resistivity, mQ cm? 90.7 - 313 33.9 24.7
Theoretical resistivity, mQ cm? 127 12.5 300 36.2 33.3
: b 2 bl, b bl, I,
Equation h < @A Din(=1/% 4Fc,,, D, Jo 12F ¢,y D,y 30,
—Aln(l - 1//1)>
Reference Ref. [36] Ref. [37] Ref. [17] Ref. [37] Ref. [17]
The position of the peak on the frequency scale gives the charac-
teristic frequency of the process. A comparison of the DRT and DTT
peak frequencies with the theoretical formulas is shown in Table 2. As £ T @
o . .
can be seen, the peak frequency allows a reliable identification of the £ 40 ettt e .
c . B .
. O . . .
underlying process (Table 2). ' o 2 1000 mMA cm-2 .
The area under the peak gives the contribution of the process to ~ 20 model .
. . e N . H
the total polarization resistivity. The bottom part of Table 2 shows the £ o / i
resistivities calculated by integration of the peaks in Fig. 5b,c. Available ' 0 50 Rer 1/00 o e 150 200
in the literature equations for the partial differential resistivities and &(z)/ mOhm cm
the respective numerical values are also shown in Table 2. As can be
seen, the DTT peak resistivities are close to the theoretical estimates.
The DTT slightly overestimates the “CCL” peak resistivity at the cost of
s « » 2.0 250
reduced resistivity of the “channel” peak.
0e006000,, Debye kernel (b)
e, 200
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‘D . Eias o ®, ~
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. CTPN =
Nonetheless, the numerical model [32] can be used to generate the -g 05 anll C2000000s0eme000000 0 &
impedance spectrum and to compare its DTT and DRT spectra. I ‘ I \ A proton
The cell operation regime and the oxygen transport parameters in || ’ [\ AN pioton 50
the porous layers corresponding to 1 A cm~2 are shown in the second 0.0 ~100
lumn of Table 1. The model Nyqui d the resulting DRT P
column of Table 1. The model yquist spectrum and the resulting Frequency / Hz
an DTT spectra calculated using the real part of impedance Z,, are 20 250
shown in Fig. 6. As can be seen, the DRT misses the peak due to 00e00060q, Composite kernel  (C)
oxygen transport in the GDL (the “GDL” peak in Fig. 6¢) and it shows 'ﬂghan 200
a phantom peak at the frequency of about 200 Hz (Fig. 6b). This peak 15 e 150 o
. . A e DTT % ORR £
could erroneously be attributed to oxygen transport in the CCL. a o 1 8
. .. . e e el 2 « model %% 100 £
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the data in Table 3 shows that all of the peaks in Fig. 6 could be ]\ 50
identified using the DTT peak parameters (frequency and resistivity). 0.0 i / l ] | i\
10t 100 100 102 100 10 105 100

3.3. DRT and DTT spectra of an experimental impedance

For the final test, the experimental impedance spectrum of a small-
scale PEM fuel cell with an active area of 0.95 cm? was taken [33].
The commercial MEA based on the reinforced PFSA membrane with the
thickness of ~9 pm and the ~8.3—pm thick Pt/C cathode catalyst layer
was used. The MEA was clamped between two glass fiber-reinforced
PTFE gaskets with a thickness of 150 pm. The regime of the cell
operation during the EIS measurements is indicated in the last column

Frequency / Hz

Fig. 6. (a) The Nyquist spectrum calculated using the numerical model [38] with the
parameters in Table 1 for the cell current density of 1 A cm~3. (b) the DRT spectrum
calculated using the real part of impedance in (a). Solid points — the model Z,,, open
circles — the reconstructed (“fitted”) Z,, using the DRT and Eq. (13) with the Debye
kernel (a =0, =0). (c) the same as in (b) for the DTT.
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Table 3
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A comparison of the DTT and DRT peak parameters for the spectra in Fig. 6b,c. The question mark denotes the poorly identified peak in the

DRT spectrum.

Channel, O,
transport

GDL, O,
transport

ORR

CCL, O,
transport

CCL, proton
transport

2.68
2.65
2.74

DRT peak frequency, Hz
DTT peak frequency, Hz
Theoretical frequency, Hz

21.8
15.3

45.0
88.9

184 (?)

1930
1168
855

96.7
75.4

DRT peak resistivity, mQ cm?
DTT peak resistivity, mQ cm?
Theoretical resistivity, mQ cm?

40.1

68.8
72.9

30.1 ()

16.2
38.4
33.3

of Table 1. The spectrum has been measured with pure oxygen feed.
More experimental details can be found in [33].

Before calculations, the inductive cable impedance iwL,,;S,,; has
been subtracted from the cell impedance. Here, L, = 120 nH is the
cable inductance and S,,; is the cell active area. The low-frequency
points with the positive imaginary part, and the high frequency points
in the range of f > 12 kHz have been discarded.

The resulting Nyquist spectrum is shown in Fig. 7a. For the DRT
and DTT calculations, the real part of the impedance was taken as it
produced a much smaller residual error of the fitted spectrum than the
imaginary part.

Pure oxygen feed means that the oxygen transport losses in the
channel and porous layers are negligibly small and we may expect
the DRT spectrum with just two peaks corresponding to the ORR and
proton transport in the CCL. However, the DRT returns three peaks
(Fig. 7b), of which the leftmost one is due to the ORR, and the two
other peaks are due to poor description of the proton transport by the
Debye kernel. On the contrary, the DTT shows two peaks (Fig. 7c),
which clearly demonstrates the advantage of the composite kernel. A
comparison of the DRT and DTT peak parameters is shown in Table 4.
Note that the sum of the resistivities of the DRT high-frequency peaks
(=41 mQ cm?) is close to the resistivity of the DTT proton peak (~36
mQ cm?), which confirms the nature of the high-frequency DRT peaks.
Generally, the accuracy of a DRT/DTT peak resistivity is expected
to depend on the residual error between the experimental and fitted
impedances and on the value of the regularization parameter. To the
best of our knowledge, this issue has not yet been addressed in fuel cell
literature.

The regime of cell operation provides some a priori information
on the number of peaks. For example, low air (oxygen) stoichiometry
suggests that on the frequency scale, the leftmost peak in the DRT and
DTT spectra is the “channel” one. To the right of the channel peak,
a GDL peak could be expected. For typical cells, the “CCL” oxygen
transport peak can be expected to the right of the large ORR peak,
between the ORR and the proton transport peaks.

Useful hints for the positioning of the « and f steps on the frequency
scale come from the DRT spectrum, which is displayed during the
code execution. The a-step should always be located just below the
main ORR peak. Our experience shows that the DTT spectrum is most
sensitive to the frequency position of the g-step. This step should be
positioned close to the proton transport peak, typically around 1 kHz.
Fig. 8 displays a screenshot illustrating the procedure of a and g steps
positioning during the code execution. Note that both the DRT and DTT
spectra are displayed.

The DTT method was developed to analyze the impedance of PEM
fuel cell in the current production regime. Such spectra always have
finite low- and high-frequency limits, which are typically 0.1 Hz and
10 kHz, respectively. The applicability of the DTT method to other
regimes and systems, is beyond the scope of this paper. Notably, the
method cannot be used to analyze the impedance of a cell operating in
the H,/N, regime.

Finally, we emphasize that the DTT should be used alongside the
DRT. The latter provides the frequency positions of the basic processes

Fig. 7. (a) The experimental Nyquist spectrum of a PEM fuel cell measured at the cell
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(peaks) in the system. The DTT enables us to refine this data and to

search for missing peaks (Fig. 8).

4. Conclusions
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A composite kernel, Eq. (11), has been proposed to calculate the
distribution of transport times (DTT) from a PEM fuel cell impedance.
Two synthetic and one experimental impedance spectra were used to
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Fig. 8. The screenshot of the interactive plot displayed during code execution. (a) The static plot showing the DRT (blue solid line) calculated from the real part of the impedance
(solid blue points). Red solid line — the real part fitted using the calculated DRT. (b) The dynamic plot showing the calculated DTT (blue solid line) and the real part of impedance
fitted using the DTT (red solid line). The dashed lines show the position of the a—step (blue line), and p—step (red line). The sliders at the bottom allow the user to move these
lines along the frequency axis using the mouse pointer. The red (fitted) line is recalculated depending on the steps positioning.

+ The nature of the most high-frequency peak in the DRT spectrum
Table 4 calculated from the experimental impedance [33] is unclear.

A comparison of the DTT- and DRT-parameters for the experimental spectrum in Fig. On the other hand, the DTT does not exhibit this peak. show-
7a measured at the cell current density of 1.0 A cm™2 [33]. The regime of the cell ’ p ?

operation is indicated in the last column of Table 1. ing the advantage of the composite kernel in deciphering the
ORR CCL, proton high-frequency part of the cell impedance.
transport « It is recommended to use both the DRT and DTT for the spectra
DRT peak frequency, Hz 197 812, 4440 analysis.
DTT peak frequency, Hz 197 1078
DRT peak resistivity, mQ cm? 55.4 258+152
DTT peak resistivity, mQ cm? 58.4 48.6 Nomenclature

Software for the DRT and DTT calculations

calculate and compare the DTT and DRT spectra. The synthetic spectra The link to the most recent version of the MS Windows exe-file
represent the PEMFC impedance at the low air stoichiometry A = 2, a for the DRT and DTT calculations is available at https://github.com/
typical value in practical applications. The experimental spectrum of a akulikovsky/DTT_software

small-size PEMFC was measured by Butori et al. [33].

+ A comparison of the DTT and DRT spectra calculated from the an- Declaration of competing interest

alytical low-current impedance [31], shows that the DTT resolves

the peak due to the oxygen transport in the cathode catalyst layer The authors declare that they have no known competing finan-
(CCL), while the DRT misses this peak. The DRT returns two high- cial interests or personal relationships that could have appeared to
frequency peaks due to poor description of the proton transport influence the work reported in this paper.

in the CCL by the Debye kernel. The DTT peak frequencies enable
the reliable identification of the peaks. The DTT peak resistivities

agree well with the theoretical predictions. Acknowledgments

» A comparison of the DTT and DRT spectra calculated from the
numerical high-current impedance [38] shows that the DTT spec- The author is grateful to Dr. Martina Butori for the high-quality raw
trum resolves the peak due to the oxygen transport in the GDL, impedance spectra [33].

which is missing in the DRT spectrum. The theoretical equations
for the “channel” and “GDL” peak frequencies agree well with the
respective DTT peak frequencies. However, at high cell currents,
the low-current formulas for the parameters of the other peaks
are not valid, so the nature of these peaks can only be guessed or Data will be made available on request.
verified using experimental procedures.

Data availability
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Nomenclature

Marks dimensionless variables

A Matrix in Eq. (17)
b ORR Tafel slope, V
b Dimensionless right side vector, Eq. (17)
Cy Double layer volumetric capacitance, F cm=3
c Oxygen molar concentration in the CCL, mol cm~3
cp Oxygen molar concentration in the GDL, mol cm~3
cp Oxygen molar concentration in the channel,
mol cm™3
Cref Reference (inlet) oxygen concentration, mol cm™3
D, Oxygen diffusion coefficient in the GDL, cm? s~!
D, Oxygen diffusion coefficient in the CCL, cm? s7!
F Faraday constant, C mol~!
f Frequency, Hz
fos Ip Frequencies of the a- and f-steps, Hz
i ORR volumetric exchange current density, A cm~3
I Unity matrix
i Imaginary unit
Jo Cell current density, A cm™2
Jj Local proton current density in the CCL, A cm—2
K. Composite kernel, Eq. (11)
Kp Debye kernel, Eq. (9)
K, Proton transport kernel, Eq. (10)
Krp Transport layer kernel, Eq. (8)
Iy GDL thickness, cm
I CCL thickness, cm
R, High-frequency resistance, Q cm?
Ry Polarization resistance, Q cm?
t Time, s
x Coordinate through the cell, cm
z Impedance, Q cm?
Zre Parallel RC—circuit impedance, Eq. (7), Q cm?
Zrp Transport layer impedance, Eq. (5), Q cm?
Zy, Warburg finite-length impedance, Eq. (1), Q cm?
Subscripts:
0 Membrane/CCL interface
1 CCL/GDL interface
b In the GDL
re Real
im Imaginary
w Warburg
Superscripts:
0 Steady-state value
1 Small-amplitude perturbation
Greek:
a, p Step functions, Eq. (12)
y Dimensionless DRT and DTT functions
n ORR overpotential, positive by convention, V
A Air flow stoichiometry
A Tikhonov regularization parameter
T Characteristic time, s
Tas Tp Characteristic time for the a— and f-steps, s
® Angular frequency of the AC signal, s~!
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