001049622 001__ 1049622
001049622 005__ 20251218202257.0
001049622 0247_ $$2doi$$ahttps://doi.org/10.21203/rs.3.rs-7411150/v1
001049622 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05410
001049622 037__ $$aFZJ-2025-05410
001049622 1001_ $$0P:(DE-HGF)0$$aGall, Samuel Le$$b0
001049622 245__ $$aCombining spring wheat genotypes with contrasting root architectures for a better use of water resources in soil? Evidence from column-scale water stable isotopic experiments.
001049622 260__ $$c2025
001049622 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1766041864_4675
001049622 3367_ $$2ORCID$$aWORKING_PAPER
001049622 3367_ $$028$$2EndNote$$aElectronic Article
001049622 3367_ $$2DRIVER$$apreprint
001049622 3367_ $$2BibTeX$$aARTICLE
001049622 3367_ $$2DataCite$$aOutput Types/Working Paper
001049622 520__ $$aBackground and AimsThe advantages of genotype mixtures on soil water balance are still poorly understood. We aim to determine the impact of soil water conditions (well-watered or chronic water deficit) on the root water uptake (RWU) of two contrasting root genotypes (“shallow root system” SRS and “deep root system” DRS) and their mixture at the booting stage.MethodsWe conducted a controlled plant-soil column experiment and quantified daily vertical profiles of the fraction of RWU (fRWU, % cm-1), i.e. the relative contribution of RWU normalized by the thickness of each layer. This calculation was achieved by applying Bayesian modelling on non-destructive soil and transpiration water stable isotopic measurements after pulse labelling. We compared these results to the monitored plant soil water status, plant physiology and root architectures.ResultsNotwithstanding minor variations in root distribution, the SRS genotype exhibited a greater fRWU compared to the SRS genotype in the topsoil (3.87±1.05 and 3.49±1.05 % cm-1, respectively) and vice-versa for the subsoil (resp. 1.16±0.17 and 1.53±0.41 % cm-1). In mixture, both genotypes maintained individual complementary fRWU distribution. The soil water deficit conditions resulted in an average increase in relative water uptake from the subsoil (+0.5% cm-1) and topsoil (+0.29% cm-1) for both genotypes. In mixture facing water deficit, the two genotypes in the mixture increased their contributions to the subsoil by 0.5% cm-1 and decreased those to the topsoil by -1.2% cm-1 in comparison to a monoculture.ConclusionThis study introduces novel observations of root water uptake plasticity, which is determined by genotype root architectures, soil water availability, and interactions with neighboring plant root architectures. This study highlights the potential of contrasting root architectures mixtures to improve their water - and nutrient – access facing water deficit.
001049622 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001049622 588__ $$aDataset connected to CrossRef
001049622 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b1$$ufzj
001049622 7001_ $$0P:(DE-HGF)0$$aLattacher, Adrian$$b2
001049622 7001_ $$0P:(DE-Juel1)180766$$aGiraud, Mona$$b3$$ufzj
001049622 7001_ $$0P:(DE-Juel1)170056$$aHarings, Moritz$$b4$$ufzj
001049622 7001_ $$0P:(DE-Juel1)176664$$aDeseano Diaz, Paulina Alejandra$$b5$$ufzj
001049622 7001_ $$0P:(DE-Juel1)131784$$aPflugfelder, Daniel$$b6$$ufzj
001049622 7001_ $$0P:(DE-HGF)0$$aAlahmad, Samir$$b7
001049622 7001_ $$0P:(DE-HGF)0$$aHickey, Lee$$b8
001049622 7001_ $$0P:(DE-Juel1)202069$$aSircan, Ahmet$$b9
001049622 7001_ $$0P:(DE-HGF)0$$aKandler, Ellen$$b10
001049622 7001_ $$0P:(DE-Juel1)171180$$aLobet, Guillaume$$b11
001049622 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b12$$ufzj
001049622 7001_ $$0P:(DE-Juel1)200254$$aPagel, Holger$$b13$$ufzj
001049622 7001_ $$0P:(DE-HGF)0$$aPoll, Christian$$b14
001049622 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b15$$ufzj
001049622 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b16$$ufzj
001049622 7001_ $$0P:(DE-Juel1)145658$$aRothfuss, Youri$$b17$$ufzj
001049622 773__ $$ahttps://doi.org/10.21203/rs.3.rs-7411150/v1$$tPlant and soil$$y2025
001049622 8564_ $$uhttps://juser.fz-juelich.de/record/1049622/files/1d92dcfa-3b6f-4fa7-becd-314d0968b8ec-1.pdf$$yOpenAccess
001049622 909CO $$ooai:juser.fz-juelich.de:1049622$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001049622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich$$b1$$kFZJ
001049622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180766$$aForschungszentrum Jülich$$b3$$kFZJ
001049622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170056$$aForschungszentrum Jülich$$b4$$kFZJ
001049622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176664$$aForschungszentrum Jülich$$b5$$kFZJ
001049622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich$$b6$$kFZJ
001049622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b12$$kFZJ
001049622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200254$$aForschungszentrum Jülich$$b13$$kFZJ
001049622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b15$$kFZJ
001049622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b16$$kFZJ
001049622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145658$$aForschungszentrum Jülich$$b17$$kFZJ
001049622 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001049622 9141_ $$y2025
001049622 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001049622 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001049622 9801_ $$aFullTexts
001049622 980__ $$apreprint
001049622 980__ $$aVDB
001049622 980__ $$aUNRESTRICTED
001049622 980__ $$aI:(DE-Juel1)IBG-3-20101118