001     1049622
005     20251222073103.0
024 7 _ |2 doi
|a 10.21203/rs.3.rs-7411150/v1
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2025-05410
037 _ _ |a FZJ-2025-05410
100 1 _ |0 P:(DE-HGF)0
|a Gall, Samuel Le
|b 0
245 _ _ |a Combining spring wheat genotypes with contrasting root architectures for a better use of water resources in soil? Evidence from column-scale water stable isotopic experiments.
260 _ _ |c 2025
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1766041864_4675
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
520 _ _ |a Background and AimsThe advantages of genotype mixtures on soil water balance are still poorly understood. We aim to determine the impact of soil water conditions (well-watered or chronic water deficit) on the root water uptake (RWU) of two contrasting root genotypes (“shallow root system” SRS and “deep root system” DRS) and their mixture at the booting stage.MethodsWe conducted a controlled plant-soil column experiment and quantified daily vertical profiles of the fraction of RWU (fRWU, % cm-1), i.e. the relative contribution of RWU normalized by the thickness of each layer. This calculation was achieved by applying Bayesian modelling on non-destructive soil and transpiration water stable isotopic measurements after pulse labelling. We compared these results to the monitored plant soil water status, plant physiology and root architectures.ResultsNotwithstanding minor variations in root distribution, the SRS genotype exhibited a greater fRWU compared to the SRS genotype in the topsoil (3.87±1.05 and 3.49±1.05 % cm-1, respectively) and vice-versa for the subsoil (resp. 1.16±0.17 and 1.53±0.41 % cm-1). In mixture, both genotypes maintained individual complementary fRWU distribution. The soil water deficit conditions resulted in an average increase in relative water uptake from the subsoil (+0.5% cm-1) and topsoil (+0.29% cm-1) for both genotypes. In mixture facing water deficit, the two genotypes in the mixture increased their contributions to the subsoil by 0.5% cm-1 and decreased those to the topsoil by -1.2% cm-1 in comparison to a monoculture.ConclusionThis study introduces novel observations of root water uptake plasticity, which is determined by genotype root architectures, soil water availability, and interactions with neighboring plant root architectures. This study highlights the potential of contrasting root architectures mixtures to improve their water - and nutrient – access facing water deficit.
536 _ _ |0 G:(DE-HGF)POF4-2173
|a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129425
|a van Dusschoten, Dagmar
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Lattacher, Adrian
|b 2
700 1 _ |0 P:(DE-Juel1)180766
|a Giraud, Mona
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)170056
|a Harings, Moritz
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)176664
|a Deseano Diaz, Paulina Alejandra
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)131784
|a Pflugfelder, Daniel
|b 6
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Alahmad, Samir
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Hickey, Lee
|b 8
700 1 _ |0 P:(DE-Juel1)202069
|a Sircan, Ahmet
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Kandler, Ellen
|b 10
700 1 _ |0 P:(DE-Juel1)171180
|a Lobet, Guillaume
|b 11
700 1 _ |0 P:(DE-Juel1)157922
|a Schnepf, Andrea
|b 12
|u fzj
700 1 _ |0 P:(DE-Juel1)200254
|a Pagel, Holger
|b 13
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Poll, Christian
|b 14
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, Harry
|b 15
|u fzj
700 1 _ |0 P:(DE-Juel1)129477
|a Javaux, Mathieu
|b 16
|u fzj
700 1 _ |0 P:(DE-Juel1)145658
|a Rothfuss, Youri
|b 17
|u fzj
773 _ _ |a 10.21203/rs.3.rs-7411150/v1
|t Plant and soil
|y 2025
856 4 _ |u https://juser.fz-juelich.de/record/1049622/files/1d92dcfa-3b6f-4fa7-becd-314d0968b8ec-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1049622
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129425
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)180766
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)170056
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)176664
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131784
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157922
|a Forschungszentrum Jülich
|b 12
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)200254
|a Forschungszentrum Jülich
|b 13
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129549
|a Forschungszentrum Jülich
|b 15
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129477
|a Forschungszentrum Jülich
|b 16
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145658
|a Forschungszentrum Jülich
|b 17
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-217
|1 G:(DE-HGF)POF4-210
|2 G:(DE-HGF)POF4-200
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-2173
|a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
914 1 _ |y 2025
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21