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Abstract: Climate change has exacerbated global droughts and floods, further 17 

disrupted the uneven temporal and spatial distribution of water resources, and therefore, 18 

poses a significant challenge to water resource management. Flood utilization, 19 

converting floodwater from hazard to valuable resource, is a key solution to this 20 

challenge. However, existing flood utilization strategies predominantly focus on 21 

surface water management through reservoir operations, overlooking integrated 22 

optimization with groundwater systems, particularly the challenges of coupling 23 

physical models with multi-objective algorithms for groundwater recovery. Here, by 24 

ensuring ecological flow and downstream flood safety, a multi-objective optimization 25 

framework employing deep learning was developed to integrate flood control, water 26 

storage, and groundwater recovery. Reservoir operations were optimized through multi-27 

scenario simulations, and a 3D groundwater numerical model was employed to assess 28 

the impact of managed aquifer recharge (MAR) using floodwater on groundwater 29 

recovery. Results for the 2023 flood season (June to September) showed that, 30 

increasing the flood limited water level (FLWL) reduced average reservoir flood risk 31 

and water scarcity by 84.9% and 61.9%, respectively, while weakening their inverse 32 

relationship. This indicates that raising FLWL improves individual objectives and 33 

reduces conflicts for balanced optimization. Maintaining continuous ecological river 34 

flow promoted groundwater recovery despite reduced total river discharge. MAR at 300 35 

m³ d-1 achieved effective groundwater recovery in 17.6% of the study area with a 36 

maximum of 0.46 m. Overall, this study presents a novel framework coupling deep 37 

learning, multi-objective optimization, and 3D groundwater modeling, enabling 38 
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optimized surface water-groundwater regulation and enhanced floodwater utilization 39 

for groundwater recovery. 40 

Keywords: Floodwater utilization; Deep learning; Groundwater recovery; Multi-41 

objective optimization; Ecological flow; Managed aquifer recharge  42 



 

4 
 

1. Introduction 43 

Global climate change is expected to intensify the hydrological cycle (Tabari, 2020), 44 

resulting in an increase in extreme precipitation events (Blöschl et al., 2017), leading 45 

to larger flood frequencies (Chagas et al., 2022), and posing significant challenges to 46 

water resource management, particularly in monsoon regions (Hirabayashi et al., 2013; 47 

Yang et al., 2023). This increase in flood intensity and frequency poses threats to 48 

ecosystems, economies, and human livelihoods (Bermúdez et al., 2021). In response to 49 

these challenges, innovative approaches such as floodwater utilization (FU) have been 50 

developed, which converts floodwater from a hazard into a valuable resource (Wang et 51 

al., 2023). This strategy has been increasingly adopted in integrated river basin 52 

management to balance water allocation (Li et al., 2021) and reservoir operation 53 

optimization to mitigate flood risks and water scarcity (Jiang et al., 2019), and enhance 54 

storage and recharge, while simultaneously controlling flood risks through strategic 55 

reservoir operations and flow regulation. 56 

FU strategies typically involve drawing down reservoirs before the flood season to 57 

create additional storage capacity, capturing and storing excess floodwater during the 58 

flood season, and releasing the stored water for beneficial purposes such as irrigation 59 

and hydropower generation during the non-flood season (Wang et al., 2023). 60 

Maximizing reservoir operation benefits was achieved through multi-stage (Liu et al., 61 

2015; Wei et al., 2022) or dynamic flood limited water level (FLWL) adjustments (Ding 62 

et al., 2023). Furthermore, the joint operation of multiple reservoirs (Jain et al., 2023) 63 

and the strategic use of flood retention areas (Bellu et al., 2016) have proven effective 64 
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in optimizing FU. Where applied, these measures have reduced flood damage and 65 

enhanced floodwater utilization efficiency (Mateo et al., 2014). 66 

However, while these FU strategies primarily focus on surface water management, 67 

research on the integrated optimization of groundwater systems, a fundamental 68 

component of the hydrological cycle (Irvine et al., 2024), remains limited. As critical 69 

hydrological components, groundwater resources undergo accelerated global depletion, 70 

threatening ecosystems and livelihoods (Jasechko et al., 2024). This is particularly 71 

severe in regions such as the North China Plain, which is one of the world’s largest 72 

groundwater depression cones (Chen et al., 2020), highlighting the urgency of 73 

groundwater recovery efforts to sustain ecosystems and human activities. Consequently, 74 

effective groundwater recovery measures are imperative to counteract depletion and 75 

sustain ecosystems and livelihoods. 76 

Accurate simulation of groundwater dynamics is essential for optimizing resource 77 

allocation in integrated water management (Haaf et al., 2023). Numerical simulation, 78 

the most widely used approach for modeling groundwater dynamics, has significantly 79 

contributed to analyzing spatial and temporal groundwater changes and quantifying the 80 

effects of various measures on groundwater dynamics (Condon et al., 2021). Roy et al. 81 

(2024) employed a MODFLOW model to determine the optimal groundwater recharge 82 

rate and to minimize groundwater decline. Lyu et al. (2025) employed an enhanced 83 

version of the SWAT-MODFLOW model to evaluate the effects of ecological recharge 84 

from reservoirs and reclaimed water releases on groundwater recovery. However, 85 

physical models might face limitations when integrated with optimization algorithms 86 
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owing to their high computational intensity (Asher et al., 2015), as groundwater 87 

dynamics are influenced by multiple hydrogeological factors, including heterogeneity 88 

in subsurface hydraulic conductivities and extraction intensities (Kuang et al., 2024). 89 

Recent advancements in deep learning, particularly Long Short-Term Memory 90 

(LSTM) networks, have yielded robust computational tools for groundwater prediction 91 

(Tripathy and Mishra, 2024). Due to their predictive accuracy (Cui et al., 2024) and 92 

potential for integration with optimization algorithms (He et al., 2022), LSTM networks 93 

have emerged as a preferred approach for analyzing nonlinear temporal features in 94 

hydrological time-series data (Hochreiter and Schmidhuber, 1997). However, analyzing 95 

the impacts of environmental factors on groundwater dynamics necessitates multi-step 96 

prediction approaches. To address error accumulation in such multi-step predictions, 97 

modifications to the LSTM architecture are necessary to minimize error propagation 98 

(Zhuang et al., 2023). The encoder-decoder LSTM architecture, which can effectively 99 

mitigate these issues by capturing temporal dependencies to improve prediction 100 

accuracy, has been extensively applied to temporal pattern recognition tasks, including 101 

natural language processing and activity forecasting (Deng et al., 2019). This 102 

architecture consists of encoder-decoder modules based on recurrent neural networks. 103 

The encoder transforms variable-length sequences into fixed-dimensional context 104 

vectors, while the decoder produces predictions by processing these vectors. 105 

Comparative analyses demonstrate that the encoder-decoder LSTM framework offers 106 

superior forecasting precision compared to conventional deep learning approaches 107 

(Wunsch et al., 2021; Xiang et al., 2020). 108 
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Despite many studies exploring floodwater utilization (FU) by reservoir regulation 109 

and the application of deep learning for groundwater level prediction, few studies have 110 

investigated the effects of using flood resources to promote groundwater recovery, by 111 

combining groundwater recovery with FU as a framework, leaving a critical gap in 112 

addressing the escalating global challenges of climate-driven floods, droughts, and 113 

widespread aquifer depletion. To address the limitations of prior studies, this study 114 

developed a framework, which embeds a deep learning model to predict groundwater 115 

levels, coupled with FU in multi-objective optimization. This framework also used a 116 

3D groundwater numerical simulation to evaluate the spatial effects of managed aquifer 117 

recharge (MAR) using floodwater resources. The Lincheng Reservoir and its associated 118 

downstream groundwater depression cone in the North China Plain served as the 119 

testbed for this study.  120 

The specific objectives of the study were: (1) to develop an encoder-decoder LSTM 121 

model for predicting groundwater levels and integrate it as a component of the objective 122 

function in multi-objective optimization; (2) to establish a multi-objective optimization 123 

framework that balances flood control, water storage, and groundwater recovery under 124 

constraints of ecological flows and flood safety; (3) to assess the effects of managed 125 

aquifer recharge (MAR) using floodwater on groundwater recovery through a 3D 126 

numerical model; (4) to evaluate the impacts of variations in deep learning 127 

hyperparameters (e.g., input sequence length) and MAR recharge rates on the 128 

framework’s performance and optimization outcomes. The overall technical framework 129 

and workflow are illustrated in Figure 1. As depicted in Figure 1, the framework begins 130 
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with data preparation in Step 1. Building on this, this study integrates deep learning into 131 

multi-objective optimization in Step 2 to jointly optimize flood control, water storage, 132 

and groundwater recovery. Subsequently, in Step 3, a numerical groundwater model 133 

(MODFLOW) is developed to quantify the effects of MAR on groundwater recovery, 134 

thereby transforming floodwater obtained from the previous step into a sustainable 135 

resource for groundwater restoration. In Step 4, this study discusses key factors, such 136 

as input sequence length and MAR rates, that influence the optimization outcomes and 137 

the potential risks involved. This approach provides a methodology for integrated water 138 

resource management in regions with groundwater overexploitation and intensive 139 

agricultural irrigation. 140 

  141 
Figure 1. Schematic of the technical roadmap developed in this study, integrating 142 
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an optimization scheme for reservoir flood risk mitigation, water scarcity 143 
reduction, and groundwater recovery benefits. The MODFLOW model was used 144 
to evaluate the effectiveness of MAR, utilizing flood resources generated by the 145 
optimization scheme. The study also investigates key influencing factors and 146 
potential risks. Abbreviations in the figure: DL, deep learning; GWL, 147 
groundwater level; MAR, managed aquifer recharge. 148 

2. Materials and Methods 149 

2.1 Study Area 150 

The Lincheng Reservoir is located in Xingtai City, Hebei Province, China and is part 151 

of the Ziya River system within the Haihe River basin (Figure 2a), which lies in a warm 152 

temperate continental monsoon climate zone. The average annual temperature ranges 153 

from 10 to 13°C, with significant variability in both inter-annual and intra-annual 154 

precipitation. Annual precipitation averages 490-600 mm, with 75-80% occurring 155 

during the summer months (July-August). Flood season precipitation primarily occurs 156 

in the form of high-intensity storms between late July and early August, resulting in an 157 

uneven temporal distribution of precipitation concentrated in short, intense periods. 158 

The Lincheng Reservoir is primarily designed for flood control and water supply 159 

management. With a catchment area of 384 km², its key water levels include the dead 160 

storage level (112.0 m), the flood limited water level (FLWL, 120.48 m), and the normal 161 

storage level (125.5 m). The discharge from Lincheng Reservoir flows into the Zhi 162 

River, which then joins the Fuyang River (Figure 2b). The Zhi River basin is located 163 

within a representative shallow groundwater depression cone (GDC) in the North China 164 

Plain, i.e., the Ning-Bai-Long Cone (see the gray shaded area in Figure 2b), where 165 

groundwater levels have undergone significant decline. Since 1980, the development 166 
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of the GDC has progressed through three primary stages (Figure 2c). From 1980 to 167 

2014, the GDC expanded rapidly, with the average groundwater level experiencing a 168 

substantial decline of 30.3 m. Between 2014 and 2018, the expansion of the GDC 169 

slowed and the area-wide average groundwater level decreased again by 1.62 m. Since 170 

2018, the ongoing implementation of over-extraction control measures has significantly 171 

reduced the expansion of the GDC, and as a consequence, the average groundwater 172 

level in the GDC had increased by 2.84 m in 2022 compared to 2018. 173 

Considering these hydrogeological characteristics and the need for continued 174 

management of groundwater depletion, the study focuses on the Lincheng Reservoir 175 

and its downstream Zhi River basin, where optimized floodwater utilization offers an 176 

effective approach for coordinating multiple water management objectives, including 177 

flood control, water storage, ecological flow maintenance, and groundwater recovery. 178 
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 179 
Figure 2. Overview of the study area: (a) Regional setting of the Haihe River basin 180 
and Ziya River system, with an inset map illustrating the geographical location of 181 
the Haihe River basin in China; (b) Hydrological characterization, including the 182 
Lincheng Reservoir, natural rivers, the groundwater depression cone, and 183 
hydrological monitoring stations; (c) Temporal evolution of the average 184 
groundwater level in the Ning-Bai-Long groundwater depression cone since 1980. 185 

2.2 Data Sources 186 

To support the integrated modeling framework for reservoir operations and 187 

groundwater dynamics in the Lincheng Reservoir and Zhi River basin, a comprehensive 188 

suite of hydrological, geological, and geospatial datasets was assembled from multiple 189 

authoritative sources. Daily inflow and outflow records for the reservoir, critical for 190 

simulating water balance and operational scenarios, were provided by the Xingtai 191 

Hydrological Survey and Research Center in Hebei Province, China. Meteorological 192 

monitoring data, including daily precipitation, potential evaporation, along with 193 
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groundwater level observations, were sourced from the Hebei Provincial Hydrological 194 

Survey and Research Center to capture temporal variability in recharge and depletion 195 

patterns. Complementing these, high-resolution geospatial data, including a 90-m 196 

Digital Elevation Model (DEM) from the Geospatial Data Cloud 197 

(http://www.gscloud.cn) and 30-m land-use classifications from the GLC-FCS30 198 

dataset (https://zenodo.org), enabled accurate delineation of the catchment topography 199 

and surface characteristics influencing runoff and infiltration processes. For the 3D 200 

groundwater numerical model, key hydrogeological parameters, including geological 201 

borehole logs, specific yields, hydraulic conductivities, infiltration coefficients, and 202 

groundwater extraction volumes, were obtained from the Ninth Geological Brigade of 203 

the Hebei Bureau of Geology and Mineral Resources.  204 

2.3 Methods 205 

2.3.1 Scenarios Setting of Flood Limited Water Level 206 

To quantify the effects of changes in the flood limited water level (FLWL) on 207 

floodwater utilization (FU), this study developed three FLWL scenarios: (a) a fixed 208 

FLWL of 120.48 m, (b) a multi-stage FLWL, and (c) a fuzzy-segmentation FLWL, 209 

whereby the flood season was divided into pre-flood, main-flood, and post-flood 210 

seasons using fuzzy set theory (Mu et al., 2022). Detailed methods for flood season 211 

segmentation and fuzzy segmentation of FLWL determination are provided in the 212 

Supporting Information Text S1. Based on this segmentation, the FLWL for scenario 213 

(b) was set at 120.48 m for the pre-flood and main flood seasons and 123.48 m for the 214 

post-flood season. This configuration was recommended by the Hebei Provincial Water 215 
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Resources Department, based on their empirical assessments of historical flood patterns 216 

and reservoir safety. Nevertheless, alternative FLWL configurations are feasible within 217 

the proposed framework in this study. In scenario (c) the FLWL for each period was 218 

dynamically adjusted by linking the available flood control storage capacity to the 219 

varying reservoir levels across the pre-flood, main-flood, and post-flood seasons, as 220 

derived from historical precipitation patterns using fuzzy set theory. Detailed 221 

procedures and equations are provided in Supporting Information Text S1. Figure 3 222 

illustrates the flood season segmentation and FLWL variations across scenarios.  223 

 224 
Figure 3. Variations in flood limited water level (FLWL) under different scenarios: 225 
the black dashed line represents fixed FLWL (Scenario a), the blue solid line 226 
indicates multi-stage FLWL (Scenario b), and the red solid line depicts fuzzy 227 
segmentation FLWL (Scenario c).  228 

2.3.2 Groundwater Level Prediction Using encoder-decoder LSTM 229 

This study adopted an encoder-decoder LSTM model, as its architecture serves as an 230 

extension of the LSTM and can better handle longer and more complex input sequences. 231 

In this architecture, the encoder processes a sequence of inputs (such as precipitation 232 

and evaporation) into a summarized representation that captures the essential temporal 233 

information (Sutskever et al., 2014), and then the decoder uses this information to 234 

predict the target variable (such as groundwater level). Compared to a simple LSTM, 235 

this design enables the model to capture long-term dependencies more effectively and 236 
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reduces error accumulation during recursive forecasting. 237 

The adopted encoder–decoder LSTM framework effectively represents the dynamic 238 

interaction between reservoir operations and groundwater responses. As depicted in 239 

Figure 4a, the encoder sequentially processes multiple hydrological and meteorological 240 

variables over several preceding time steps, capturing their temporal dependencies and 241 

compressing the information into a temporary state vector. At each time step t, the input 242 

vector xt comprises historical groundwater levels, precipitation, potential evaporation, 243 

and reservoir discharge. After processing an input sequence of length m days, the 244 

encoder outputs the final hidden and cell states (hₘ, cₘ), which encapsulate the temporal 245 

dependencies of the sequence. The decoder then initializes with these states and 246 

produces the predicted groundwater level at the next time step (ym+1) through a fully 247 

connected layer. 248 

Both the encoder and decoder are composed of LSTM units that share the same 249 

internal gate structure and information-update mechanism. As shown in Figure 4b, the 250 

LSTM unit consists of three gates: the forget gate, input gate, and output gate. The 251 

forget gate (ft) determines the proportion of the previous cell state ct-1 to discard, 252 

allowing the model to remove outdated information. Subsequently, the input gate (it) 253 

regulates the current external information (i.e., input xt) and generates candidate cell 254 

state �tc  that represents potential new memory. The updated cell state ct combines the 255 

past memory, weighted by the forget gate, with the candidate memory, weighted by the 256 

input gate. Finally, the output gate (ot) selects features from the updated cell state ct to 257 

produce hidden state ht, which serves as the output to the next time step. Detailed 258 
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equations and descriptions are provided in Supporting Information Text S2.  259 

  260 

Figure 4. Model architecture: (a) Encoder–decoder LSTM framework for 261 
groundwater-level prediction. The encoder processes an input sequence of m time 262 
steps (x₁, x₂, …, xₘ), where each xₜ contains historical groundwater levels, 263 
precipitation, potential evaporation, and reservoir discharge. The decoder 264 
converts the encoded temporal information into the predicted downstream 265 
groundwater level (yₘ₊₁). (b) Basic LSTM layer structure for the time step t to t + 266 
1, with three essential gates including forget, input, and output gates that regulate 267 
the cell state update and control the information flow through the network.. 268 
Abbreviations in the figure: FC, fully connected layers; GWL, groundwater level. 269 

As an important hyperparameter of encoder-decoder LSTM, temporal dependencies 270 

parameter (input sequence length) significantly influences model performance, 271 

particularly in capturing both short-term fluctuations and long-term trends in 272 

hydrological time series (Wunsch et al., 2021). To evaluate the model performance 273 

under varying input sequence length during the 2023 flood season, the dataset was 274 

partitioned into a training period (January 1, 2018 to May 31, 2023) and a testing period 275 

(June 1, 2023 to September 30, 2023). The methodological workflow comprised the 276 

following six phases: 277 
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1) Data preprocessing: normalization was applied to address dimensional 278 

discrepancies among heterogeneous features. 279 

2) Input sequence length configuration: the length m was determined experimentally, 280 

ranging from 1 to 15 days, through parametric trials. This range was chosen to 281 

balance short-term and medium-term dependencies, ensuring that hydrological 282 

fluctuations can be effectively captured. 283 

3) Network architecture: the encoder-decoder was coupled with the LSTM 284 

architecture. A fully connected layer converted decoder states into normalized 285 

predictions. 286 

4) Model training: the Adam optimizer was used to minimize mean squared error 287 

(MSE) loss with a learning rate of 0.001. The training configuration included a batch 288 

size of 32 and a maximum of 200 epochs. 289 

5) Post-processing: predictions were denormalized to derive GWL values. 290 

6) Performance evaluation: prediction accuracy was quantified using the coefficient 291 

of determination (R²∈[0,1]) and mean squared error (MSE∈[0,+∞)), with perfect 292 

predictions achieved when R² = 1 and MSE = 0. 293 

2.3.3 Coupling Framework of Deep Learning and Multi-Objective 294 

Optimization 295 

The coupled deep learning and multi-objective optimization framework was 296 

developed for the Lincheng Reservoir to optimize flood control, water storage, and 297 

groundwater recovery. This framework incorporates flood limited water level (FLWL) 298 

variations across operational scenarios to assess the impacts of strategies on 299 
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multifunctional performance. The Non-dominated Sorting Genetic Algorithm II 300 

(NSGA-II) (Deb et al., 2002) was utilized to identify the Pareto frontier (i.e., the set of 301 

non-dominated solutions representing optimal trade-offs among competing objectives) 302 

under constraints. 303 

2.3.3.1 Objective Functions 304 

The developed multi-objective optimization framework incorporated the following 305 

objective functions:  306 

The first is the reservoir flood risk during reservoir operation, which was quantified 307 

as the exceedance magnitude above FLWL. The corresponding objective was 308 

formulated to minimize the cumulative excessive flood damage as: 309 

1 1
1

min
T

t

t

F f


                (1) 310 

where T represents the total number of scheduling periods, and 1
tf  is the relative flood 311 

exceedance in period t, defined as: 312 

1

( ) /

0
t t t

t

l l l
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   
 ＜

            (2) 313 

where 
tW   and 

t

lW   represent the actual reservoir storage and the storage 314 

corresponding to the FLWL at the period t [L3], respectively. 315 

Water storage benefits were quantified by the ability of the reservoir to recover to the 316 

normal storage level after the flood season. The water scarcity objective aimed to 317 

minimize terminal storage deviation by: 318 

2min s t T

s

W W
F

W


               (3) 319 

where sW   denotes the storage capacity at normal storage level [L3] and t TW  320 
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represents the reservoir storage at the end of the regulation period [L3]. 321 

Groundwater recovery benefits were evaluated through post-regulation groundwater 322 

level rise relative to baseline operations. The groundwater recovery objective 323 

maximized groundwater level elevation gain by: 324 

3max base

base

GWL GWL

G L
F

W


              (4) 325 

where GWL   is the encoder-decoder LSTM predicted groundwater level under 326 

operational schemes [L], and baseGWL  denotes the baseline groundwater level at the 327 

end of the flood season [L] without floodwater utilization. 328 

2.3.3.2 Constraint Conditions 329 

While minimizing the objective function the following constraints were used for the 330 

water balance: 331 

1 1 1t t t tW I R W                   (5) 332 

where tW  and 1tW  are the reservoir storage volume at period t and t+1 [L3]. 1tI   333 

and 1tR  are the inflow and outflow volume at period t+1 [L3], respectively. 334 

The constraint on ecological flow was employed as: 335 

eco
t tQ Q                  (6) 336 

where 
eco
tQ  represents the downstream ecological flow at period t [L3T-1], calculated 337 

using the Tennant method (Tennant, 1976). 338 

The constraint on downstream flood safety was defined as 339 

maxtQ Q                  (7) 340 

where maxQ  denotes the maximum discharge for downstream flood protection [L3T-341 

1]. maxQ  was determined through hydrological frequency analysis using Pearson type 342 
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III distribution (Ji et al., 1984). 343 

Finally, a constraint on reservoir storage was applied by: 344 

min maxtW W W                (8) 345 

where minW  and maxW  are the reservoir storage correspond to dead storage level and 346 

normal storage level storage, respectively [L3]. 347 

2.3.3.3 Optimization Algorithm Implementation 348 

The 2023 extreme flood event in the Haihe River Basin was utilized as a case study 349 

to optimize daily reservoir operations, with the outflow-to-inflow ratio as the decision 350 

variable, which provides a normalized measure of reservoir release relative to incoming 351 

water volumes, thereby enabling flexible and scalable optimization across varying 352 

inflow conditions, while avoiding reliance on absolute outflow values that may 353 

fluctuate significantly with hydrological variability. 354 

To balance the competing objectives of flood risk, water scarcity, and groundwater 355 

recovery using this decision variable, a multi-objective optimization model was 356 

developed and solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-357 

II) (Deb et al., 2002). NSGA-II enhances computational efficiency through fast non-358 

dominated sorting and crowding distance mechanisms, while exhibiting robust 359 

performance across diverse engineering applications (Verma et al., 2021). Parameter 360 

configurations included a population size of 100, a maximum of 1,000 generations, a 361 

crossover probability of 0.9, and a mutation probability equal to the inverse of the 362 

number of decision variables. 363 

Iterative optimization produced constrained discharge schemes, resulting in a non-364 
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dominated solution set across the three objectives defined. The projection pursuit 365 

method (Han et al., 2025) was utilized for Pareto front analysis. This method projects 366 

high-dimensional solutions onto a lower-dimensional subspace, facilitating quantitative 367 

analysis and decision-making, while mitigating the curse of dimensionality. 368 

Additionally, Spearman’s rank correlation coefficient was calculated for the 369 

objective function values to investigate relationships among the objectives. The 370 

Spearman’s rank correlation coefficient (ρ) is calculated by: 371 

2

2

6
1

( 1)
id

N N
  


               (9) 372 

where di represents the difference between the ranks of corresponding values for each 373 

objective pair, and N denotes the number of observations.  374 

2.3.4 Evaluation of Groundwater Recharge Measures 375 

A three-dimensional groundwater numerical model was developed using the 376 

MODFLOW model to simulate the effectiveness of managed aquifer recharge (MAR) 377 

utilizing flood resources. Based on Darcy’s law and the water balance principle, a 378 

system of partial differential equations was employed to simulate the groundwater flow 379 

numerically: 380 
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      (10) 381 

where Kx, Ky and Kz are the values of hydraulic conductivity [LT⁻¹] along the x, y and z 382 

coordinate axes in the simulation region Ω, h is the hydraulic head [L], ε is the 383 



 

21 
 

source/sink term [LT⁻¹], μ is the specific yield, h0 is the initial head [L], Г0 is the upper 384 

boundary condition, Г1 is the Dirichlet boundary condition, Г2 is the Neumann 385 

boundary condition, n is the outward normal direction of the Neumann boundary, q is 386 

the lateral flux per unit area and per unit time at the Neumann boundary [LT⁻¹], and Kn 387 

is the hydraulic conductivity in the normal direction at the boundary [LT⁻¹]. 388 

The simplification of boundary conditions was critical for the groundwater numerical 389 

simulation. Rivers can be simplified as Dirichlet conditions, while the boundaries 390 

between different hydrogeological zones can be simplified as Neumann conditions 391 

(flux boundary), with flow values calculated using Darcy’s law based on multi-year 392 

groundwater level data. Therefore, as shown in Figure 5a, the northern Wu River and 393 

the southern Beili River were designated as Dirichlet boundary conditions. The western 394 

boundary, representing the boundary between the Taihang Mountains and the North 395 

China Plain, was designated as a Neumann boundary condition. The main channel of 396 

Zhi River was implemented as an internal river boundary condition. 397 
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 398 

Figure 5. Overview of the 3D groundwater modeling area in the Zhi River basin 399 
for (a) boundary conditions and key features, including recharge wells (blue dots), 400 
geological boreholes (black dots), monitoring wells (blue triangle), with elevation 401 
contours in meters, and distributions of (b) hydraulic conductivity, (c) specific 402 
yield, and (d) infiltration coefficient. 403 

Based on borehole data (Figure 5a), the aquifer system was vertically discretized into 404 

three layers: an unconfined aquifer (Layer 1), a semi-confined aquifer (Layer 2), and a 405 

confined aquifer (Layer 3). The absence of consistent impermeable layers between the 406 

unconfined and semi-confined aquifers results in a strong hydraulic connection. Given 407 

that the study area is located in a typical shallow groundwater depression cone (Figure 408 

2b), Layers 1 and 2, with depths ranging from 13 to 60 m, and 80 to 150 m, respectively, 409 

were selected as the primary focus of this study.  410 

Source terms included lateral recharge, precipitation infiltration, and irrigation return 411 
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flow. Sink terms included lateral discharge, groundwater extraction, and actual 412 

evapotranspiration. However, the groundwater table in this region typically exceeds 4 413 

m in depth, which surpasses the maximum evaporation depth for unconfined aquifers. 414 

When the groundwater table exceeds this maximum depth, the connection between 415 

groundwater and evapotranspiration weakens or disappears (Condon and Maxwell, 416 

2019). Consequently, actual evapotranspiration was set to zero in the sink terms. 417 

Detailed calculations of the source and sink terms are provided in Supporting 418 

Information Text S3. To assess the impact of the omission of evapotranspiration and the 419 

flow boundary condition, a sensitivity analysis was conducted. The results of this 420 

analysis are presented in Supporting Information Text S4. 421 

The groundwater level on May 31, 2023 was set as the initial hydraulic head, with 422 

daily stress periods spanning June 1, 2023 to September 30, 2023 (122 simulation days). 423 

To evaluate MAR effectiveness, this study established 20 recharge wells along a cross-424 

section of the Zhi River (see Figure 5a). Six recharge intensity gradients (50–300 m³ d-425 

1 with increments of 50 m³ d-1) were implemented to quantify the effects of MAR using 426 

floodwater. 427 

3. Results 428 

This section presents the outcomes derived from the integrated multi-scenario 429 

framework coupling deep learning with multi-objective optimization and the three-430 

dimensional groundwater numerical model. We assessed the performance of the 431 

encoder-decoder LSTM model in predicting groundwater levels and the groundwater 432 

numerical model in predicting groundwater dynamics. Furthermore, we characterize 433 
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the Pareto frontier distributions, identify the best and worst solutions for each objective 434 

function across the different scenarios and quantify the effects of MAR under varying 435 

floodwater rates. 436 

3.1 Ecological Flow and Maximum Discharge 437 

As critical constraints, the determination of ecological flow and maximum discharge 438 

directly influenced the optimization outcomes. The Tennant method was employed to 439 

calculate historical monthly average river flow, which served as the baseline for 440 

ecological flow assessment due to its wide applicability under limited flow data 441 

conditions. Long‑term records showed recurrent zero‑discharge episodes during the 442 

flood season, which depressed the multi‑year monthly means. As an illustration, during 443 

the 2023 flood season there were 57 consecutive zero‑flow days from June 1 to July 27 444 

(Figure S1 in Supporting Information). Accordingly, to maintain suitable aquatic 445 

habitats, ecological flow thresholds were set at 60% of monthly averages during flood 446 

seasons and 30% in non-flood seasons (Table 1), since flows within 60–100% of the 447 

natural regime sustain good habitat conditions, while 30–60% meet basic ecological 448 

requirements (Tennant, 1976). Implementing these ecological flow constraints in 2023 449 

eliminated downstream river drying during the flood season, reducing zero-flow days 450 

from 57 to 0, which effectively restored continuous flow connectivity and improved the 451 

stability of downstream aquatic habitats. 452 

Table 1. Results of multi-year average ecological river flow calculations (1961–453 
2023). 454 

Month Average River Flow  

(m3 s-1) 

Ecological River Flow  

(m3 s-1) 
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1 0.113 0.034 

2 0.105 0.032 

3 0.574 0.172 

4 0.871 0.261 

5 1.075 0.322 

6 0.833 0.500 

7 1.551 0.930 

8 2.339 1.404 

9 0.584 0.350 

10 0.723 0.217 

11 0.474 0.142 

12 0.294 0.088 

Historical extreme discharge events were analyzed through empirical frequency 455 

analysis of annual maximum discharge records. Documented events included a 200-456 

year return period flood (2,448 m³ s-1) in 1963 and a 100-year return period flood (1,016 457 

m³ s-1) in 1996. The unified empirical frequency analysis, combined with Pearson Type 458 

III distribution curve fitting, demonstrated excellent model performance (R²=0.96), 459 

confirming the ability of the distribution to statistically characterize discharge extremes 460 

(Figure S2 in Supporting Information). When adopting a 2% exceedance probability 461 

standard (i.e., a 50-year return period), the maximum discharge for flood safety was 462 

determined to be 734 m³ s-1, which was selected to ensure adequate flood protection for 463 

downstream urban areas. 464 

These two constraints, including minimum ecological flow and maximum discharge 465 

threshold, jointly defined the feasible solution space of the optimization process. The 466 

minimum ecological flow limits excessive water retention in the reservoir, thereby 467 

ensuring continuous downstream flow connectivity even under low-inflow conditions. 468 

In contrast, the maximum discharge threshold limits excessive flood releases, thereby 469 

preventing downstream flood hazards. Consequently, these constraints confined the 470 
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optimization results within a reasonable range, ensuring that downstream ecological 471 

requirements were satisfied while maintaining sufficient flood-control capacity. 472 

3.2 Groundwater Level Prediction Effect 473 

To optimize the predictive accuracy of the encoder-decoder LSTM model, we 474 

evaluated its performance by tuning the input sequence length (m), which governs the 475 

temporal dependency window through which the model captures hydrological memory. 476 

In this context, m represents the time horizon over which antecedent groundwater levels, 477 

precipitation, potential evaporation, and reservoir discharge collectively influence 478 

groundwater dynamics. Short sequences may fail to capture delayed hydrological 479 

feedback, whereas long sequences may introduce redundant temporal information. 480 

Comparative performance metrics across different m varying from 1-15 days are 481 

illustrated in Figures 6a-o. While maintaining superior training performance (R² > 0.93, 482 

MSE < 0.2) for all m, testing accuracy showed notable variability. m of 5–11 days 483 

yielded robust testing set performance (R² > 0.85, MSE < 0.02), indicating strong 484 

correlations between hydrological inputs (including precipitation, evaporation, and 485 

discharge) and groundwater levels. The model performed optimally on the testing set 486 

at m = 6 days (R² = 0.93, MSE = 0.008), followed closely by m = 9 days (R² = 0.92, 487 

MSE = 0.010). This superior performance corresponds to the characteristic lag between 488 

precipitation, evaporation, reservoir releases, and groundwater level responses, 489 

indicating that the model effectively captured short-term surface–subsurface 490 

interactions. Accordingly, these two configurations were selected for integration into 491 

the coupling framework in subsequent studies: m = 6 for the primary groundwater level 492 



 

27 
 

predictions in the coupling framework due to its superior performance, and m = 9 for 493 

subsequent sensitivity analyses to assess the robustness of optimization outcomes. 494 

 495 

 496 

Figure 6. Results of the groundwater level prediction of the encoder-decoder 497 
LSTM Model: (a)-(o) model performance on the training and testing sets for input 498 
sequence length of 1-15 days; (p) fitting effect of groundwater dynamics with an 499 
input sequence length of 6 days, where the black solid line, blue solid line, and red 500 
dashed line represents the observed, predicted groundwater level, and the trend of 501 
groundwater level changes during the prediction period. 502 

The encoder-decoder LSTM model performed effectively in predicting groundwater 503 

dynamics at an input sequence length of 6 days. As demonstrated in Figure 6p, the 504 

model achieved high predictive performance, with training period accuracy (R²=0.99) 505 
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and testing period generalization capacity (R²=0.93).  506 

The predicted groundwater level series closely matched the observed values over 507 

time throughout the monitoring period, even during extreme water level fluctuations. 508 

Additionally, groundwater levels exhibited an upward trend throughout the prediction 509 

period, with a long-term trend (see the fitted line in Figure 6p) indicating an average 510 

annual groundwater recovery rate of 1.13 m, which resulted from the implementation 511 

of effective groundwater management and control measures in the study area. 512 

Consequently, this m = 6 configuration was selected for groundwater prediction in 513 

subsequent multi-objective optimization. 514 

3.3 Pareto Frontier Distribution 515 

Based on the previously determined input length of m = 6 days, the encoder-decoder 516 

LSTM model was incorporated into the coupled deep learning and multi-objective 517 

optimization framework. Through iterative optimization computations, this study 518 

generated the two-dimensional projections of the original three-objective Pareto front 519 

for the Lincheng Reservoir system under varying FLWL scenarios (Figure 7). The 520 

depicted box plots (the diagonal graphs in Figure 7) quantitatively characterize the 521 

distributional properties of each objective, while the scatter plots (the off-diagonal 522 

graphs in Figure 7) illustrate the inverse and positive relationships among competing 523 

objectives. Additionally, the Spearman’s rank correlation coefficient (ρ) reflected the 524 

strength of these relationships. Negative correlations (ρ < 0) denote inverse 525 

relationships, where improvements in one objective (e.g., reducing reservoir flood risk) 526 

come at the expense of another (e.g., increasing reservoir water scarcity), necessitating 527 
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compromises in decision-making to balance competing priorities. In contrast, positive 528 

correlations (ρ > 0) indicate advancements in one objective simultaneously support or 529 

enhance the other, enabling optimization without inherent conflicts. Figure 7 shows that 530 

there exists a detectable inverse relationship between the reservoir flood risk and 531 

reservoir water scarcity objectives across all scenarios. The negative ρ values among 532 

these two factors (all below -0.99) in all scenarios indicated that it was challenging to 533 

reduce both reservoir flood risk and water scarcity simultaneously through optimized 534 

scheduling. Reservoir water scarcity objectives exhibited positive relationships with 535 

groundwater recovery targets (ρ > 0.60 in all scenarios), while reservoir flood risk 536 

objectives demonstrated inverse characteristics with groundwater recovery (ρ < -0.59 537 

in all scenarios). When reservoir discharge decreased, water storage in the reservoir 538 

increased, more inflow was retained within the reservoir, and consequently elevating 539 

reservoir flood risk during the flood season while reducing reservoir water scarcity risk 540 

at the end of the flood season. Meanwhile, the reduced downstream release decreased 541 

the available infiltration, leading to weaker groundwater recovery effects. Therefore, 542 

reservoir flood risk exhibited inverse relationships with both reservoir water scarcity 543 

and downstream groundwater recovery, whereas reservoir water scarcity and 544 

groundwater recovery showed a positive relationship. This outcome is consistent with 545 

the fundamental principles of water balance in the hydrological cycle. 546 

The groundwater recovery targets calculated in all scenarios were relatively small, 547 

with values on the order of 10-5. These values are dimensionless, as they were calculated 548 

as the ratio of groundwater recovery to the original groundwater level, representing 549 
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relative rather than absolute changes. This confirmed that relying solely on discharge 550 

flow regulation for groundwater recovery was substantially limited and further 551 

indicated that, within the imposed operational constraints, the variations in reservoir 552 

discharge induce only minor changes in downstream river flow compared with other 553 

groundwater source and sink terms. 554 

With the transition from Scenario a to Scenario c, ρ between reservoir water scarcity 555 

and groundwater recovery decreased from 0.872 to 0.612, while that between reservoir 556 

flood risk and groundwater recovery was also weakened from –0.872 to –0.598. This 557 

weakening of both positive and negative correlations arises because raising the FLWL 558 

allowed more water to be stored in the reservoir, increasing its storage capacity. As a 559 

result, both reservoir flood risk and reservoir water scarcity risk declined, whereas 560 

groundwater recovery diminished because reduced downstream releases recharge led 561 

to less infiltration. This adjustment increased the influence of storage capacity on both 562 

flood risk and reservoir water scarcity, while groundwater recovery remained primarily 563 

controlled by reservoir discharge. Consequently, elevating the FLWL across different 564 

scenarios reduces the direct competition between flood control and reservoir water 565 

storage, enabling simultaneous enhancements in flood control safety and water storage 566 

benefits. These shifts altered the mechanisms linking the objectives, thereby attenuating 567 

the strength of their inverse or positive relationships. 568 
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  569 

Figure 7. Two-dimensional matrix diagram of the Pareto front for an input 570 
sequence length of 6 days for (a) Scenario a, (b) Scenario b, and (c) Scenario c, 571 
illustrating the relationships among the three optimization objectives: flood risk, 572 
water scarcity, and groundwater recovery. Blue scatter points represent the 573 
optimized solutions, red ellipses indicate the overall inverse or positive trends 574 
between objectives, and ρ quantifies the strength and direction of these 575 
relationships. Green boxplots along the diagonal show the distribution of each 576 
objective within its respective scenario. (d) compares the distributions of the three 577 
objectives across the three FLWL scenarios, revealing the sensitivity of the 578 
optimization outcomes to different reservoir water-level constraints. 579 

Adjustments to FLWL induced substantial changes in the Pareto front objective 580 

values (Figure 7d). Increasing FLWL (Scenarios a-c) reduced flood risks by 84.9% and 581 

water scarcity risks by 61.9%, confirming that an increase in FLWL within safe 582 
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operational thresholds enables the dual-objective optimization of flood control and 583 

water storage. This improvement arises because a higher FLWL increases the storage 584 

capacity of the reservoir, thereby lowering the probability of FLWL exceedance while 585 

allowing more water to be retained for subsequent use, which consequently reduces 586 

water scarcity losses at the end of the flood season. However, the accompanying 587 

decrease in downstream discharge reduces river-aquifer interactions, thereby 588 

weakening groundwater recovery by 22.2%. Groundwater recovery targets remained 589 

positive (>0) across all scenarios, demonstrating that maintaining regulated ecological 590 

flow thresholds effectively mitigates groundwater level deterioration even under 591 

diminished total discharge conditions. However, groundwater recovery remained 592 

limited across all scenarios. This suggested that while maintaining ecological flow, 593 

which facilitated groundwater recovery, additional effective measures were still 594 

required to achieve rapid groundwater recovery. 595 

3.4 Best and Worst Solution for Each Objective 596 

As demonstrated in previous sections, distinct positive or inverse relationships 597 

existed between different objectives. In the next step, the best and worst solutions for 598 

each objective were then analyzed to assist decision-makers in selecting management 599 

strategies based on different priorities. Figure 8 illustrates the solutions for each 600 

objective across scenarios. The results revealed substantially larger discharge volumes 601 

during peak flood periods (July 30 to August 1) compared to other periods under all 602 

scenario-solution combinations. 603 

The best solution for flood control (the first row graphs in Figure 8) kept the reservoir 604 
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levels below the corresponding FLWL throughout all operational periods (F1 in 605 

Equation 3 equals 0). Given the pronounced inverse relationships between flood risk 606 

and reservoir water scarcity objectives, this solution also represented the worst solution 607 

for water storage in Scenarios a and b (Figures 8a4 and 8b4) or closely approximates it 608 

in Scenario c (Figure 8c4), thereby highlighting the direct conflict between minimizing 609 

reservoir flood risk throughout the flood season and ensuring adequate storage at the 610 

end of the flood season. The stringent implementation of FLWL operation strategies 611 

resulted in waste of floodwater resources. The floodwater utilization rate (i.e., utilized 612 

flood volume/total flood volume) stayed below 25% across all scenarios, even dropping 613 

below 5% in Scenario a. This outcome arose because higher outflows led to lower 614 

reservoir levels, preventing full utilization of storage capacity. As a result, floodwater 615 

was primarily released rather than being retained for future use, resulting in low 616 

floodwater utilization efficiency. Consequently, reservoir water levels at the end of the 617 

flood season became critically low, making rapid restoration to normal storage level 618 

operationally challenging. 619 

The best solution for water storage (the third row graphs in Figure 8) improved 620 

floodwater utilization, with resource utilization rates approaching 40% across all 621 

scenarios. This operational strategy raised reservoir levels to normal storage capacity 622 

by the end of the flood season (F2 = 0). However, this solution also represented the 623 

worst solution for flood control (the second row graphs in Figure 8). This 624 

implementation resulted in reservoir level exceedances above FLWL for 62 days 625 

(Scenario a), 51 days (Scenario b), and 26 days (Scenario c), respectively. This trend 626 
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was driven by the increase in FLWL, which expanded the allowable storage space, 627 

thereby reducing the frequency of exceedances under the same storage strategy. 628 

The best solution for groundwater recovery (the fifth row graphs in Figure 8) within 629 

the optimization framework showed operational patterns similar to the best solution for 630 

flood control (the first row graphs in Figure 8), with reservoir levels remaining below 631 

the FLWL. While this strategy maximized the groundwater recovery objective relative 632 

to other feasible operations, its absolute efficacy remained limited, since a considerable 633 

portion of floodwater releases could not be effectively converted into subsurface 634 

storage. This limitation arose because the duration of flood peaks was short, and the 635 

limited short-term infiltration restricted substantial groundwater recharge during the 636 

flood season. This also highlights the limitation of relying solely on reservoir release 637 

regulation for groundwater recovery. 638 

The worst solution for groundwater recovery (the sixth row graphs in Figure 8) was 639 

characterized by minimal reservoir discharge, which substantially reduced groundwater 640 

recharge and produced the lowest recovery effects. Because of the reduced outflow, the 641 

reservoir retained higher water levels by the end of the flood season, generally 642 

remaining close to the normal storage level. 643 

While the best and worst solutions for each objective cannot achieve optimization of 644 

all objectives simultaneously, a moderate elevation of FLWL facilitated simultaneous 645 

reduction of both flood and water scarcity risks. However, as indicated by the limited 646 

groundwater recovery across scenarios, additional measures such as managed aquifer 647 

recharge (MAR) are necessary to enhance groundwater recovery. Accordingly, the 648 



 

35 
 

following section evaluates groundwater numerical simulations and quantifies the 649 

impacts of MAR under varying recharge rates. 650 

 651 
Figure 8. Best and worst solution for each objective under Scenarios a, b, and c. 652 
The first and second row graphs show the best and worst solutions for flood 653 
control, the third and fourth row graphs for water storage, and the fifth and sixth 654 
row graphs for groundwater recovery. The best solution for flood control 655 
maintains reservoir levels below corresponding FLWL throughout all operational 656 
periods, while the best solution for water storage achieves normal storage level by 657 
the end of flood season. 658 
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3.5 Effectiveness of Groundwater Numerical Simulation 659 

To further investigate the effective floodwater utilization strategies, the proposed 660 

MAR scheme was tested, whereby accurate simulation of groundwater dynamics 661 

served as the essential basis for evaluating the feasibility of this strategy. To evaluate 662 

MAR feasibility, the MODFLOW model was employed to simulate groundwater 663 

dynamics. A comparative analysis of simulated and observed groundwater levels at six 664 

monitoring wells (i.e., Zhongzhang, Xiyin, Tunli, Beicun, Maoshanying, and Longyao) 665 

is presented in Figure 9. 666 

Overall, the simulated results demonstrated strong agreement with observed trends, 667 

indicating that the model effectively captured groundwater level dynamics. Most 668 

monitoring wells exhibited satisfactory calibration performance, with R² ranging from 669 

0.82 to 0.96 and MSE between 0.0006 and 0.016 m, confirming the robustness of the 670 

simulation accuracy. These results validated the applicability of MODFLOW for 671 

providing reliable support for the quantitative assessment of managed aquifer recharge 672 

effectiveness. 673 
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 674 
Figure 9. Comparison of measured and simulated groundwater levels at different 675 
monitoring wells. (a) Zhongzhang, (b) Beicun, (c) Xiyin, (d) Tunli, (e) 676 
Maoshanying, and (f) Longyao, with the black solid line representing the 677 
measured level, the blue solid line the simulated level, and the red dashed line the 678 
long-term linear trend. Different background colors distinguish various trend 679 
stages during the simulation period. 680 

During the simulation period, the groundwater levels of six monitoring wells 681 

exhibited distinct stage trends. For most wells (excluding Zhongzhang and Beicun in 682 

Figures 9a-b), the levels exhibited a decline in groundwater levels before recovering. 683 

In contrast, the measured and simulated groundwater level at Zhongzhang well 684 

exhibited a declining trend, followed by a slow increase, and a followed decline. The 685 

level at Beicun (Figure 9b) also exhibited a trend of decline, whereby the second phase 686 

was characterized by stabilization, and a followed increase in groundwater levels. The 687 

initial decline in groundwater levels across nearly all wells can be associated with high 688 
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groundwater extraction used for spring irrigation, while the subsequent increases were 689 

driven by substantial precipitation during the flood season. These deviations can be 690 

attributed to localized groundwater extraction, which induced additional fluctuations in 691 

the groundwater levels at these two wells. 692 

3.6 Investigation on Efficient Utilization of Flood Resources 693 

Leveraging the validated MODFLOW model, we quantified the spatial and 694 

quantitative effects of MAR using floodwater resources under varying recharge rates, 695 

as illustrated in Figure 10. Due to varying hydrogeological conditions in the area, the 696 

groundwater recovery levels exhibited spatial heterogeneity. As can be seen, 697 

groundwater recovery primarily occurred around the Zhi River, with more pronounced 698 

recovery observed in the western regions compared to the eastern regions. This 699 

difference might arise from the smaller specific yield in the west, where limited aquifer 700 

storage capacity causes the same recharge volume to produce a high rise in groundwater 701 

levels. By assuming recharge intensities from the 20 recharge wells ranging from 50 to 702 

300 m³ d-1, the proportion of the effective groundwater recovery area also varied and 703 

increased from 9.3 to 17.6%. Simultaneously, the average recovery in the effective 704 

recovery areas increased from 0.01 m to 0.09 m. The maximum groundwater recovery 705 

exhibited a distinct three-phase nonlinear pattern in response to varying recharge rates. 706 

In phase I, with recharge rates of 50 - 100 m³ d-1, the maximum recovery level surged 707 

from 0.06 m to 0.36 m, as the aquifer’s recharge potential was high at this stage. In 708 

phase II, with recharge rates of 100-200 m³ d-1, it stabilized at 0.36 m, suggesting a 709 

diminishing response as additional recharge no longer produced proportional increases 710 
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in groundwater levels. In phase III, with the highest recharge rates of 200-300 m³ d-1, 711 

the recovery gradually increased from 0.36 m to 0.46 m, since enhanced recharge 712 

expanded the groundwater recovery zone, leading to a further rise in water levels but 713 

with a smaller magnitude than that in phase I. As shown in Figure 10g, the recovery 714 

rate significantly improved between recharge rates of 50 and 100 m³ d-1 (p < 0.05), 715 

indicating a marked response within this recharge rates range. This pattern demonstrates 716 

that increasing recharge intensity enhances groundwater recovery levels, but the effect 717 

might be weakened as the aquifer approaches its limits. 718 
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 719 
Figure 10. Spatial distribution of groundwater recovery under varying recharge 720 
rates in the 20 wells. (a) 50, (b) 100, (c) 150, (d) 200, (e) 250, and (f) 300 m³ d-1. Blue 721 
lines represent river, and black dots denote recharge wells. The inset pie chart 722 
illustrated the proportion of areas with different recovery levels: blue indicated 723 
unrecovered areas (recovery = 0 m), green showed inefficient recovery areas (0 < 724 
recovery < 0.01 m), and red denoted effective recovery areas (recovery > 0.01 m). 725 
(g) the distributions of recovery values (> 0 m) across different recharge rates, 726 
presented as boxplots and scatter points, where mean values are denoted by 727 
diamonds. 728 

This pattern is consistent with the findings of Samanta et al. (2020) on recharge 729 

volume-dependent infiltration rate thresholds. Therefore, the effective implementation 730 
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of MAR should consider the spatial heterogeneity of aquifer permeability, optimize 731 

recharge rates, and consider land use constraints (Owuor et al., 2016) to avoid 732 

inefficient percolation zones, while balancing recovery efficacy with engineering costs. 733 

4. Discussion 734 

While the aforementioned results demonstrate the effectiveness of the proposed 735 

floodwater utilization framework, including the performance evaluation of the 736 

groundwater numerical model, and the quantification of MAR effects using floodwater 737 

resources, several key aspects merit further examination to contextualize these findings 738 

and inform future applications. Accordingly, this discussion first examines the 739 

sensitivity of optimization outcomes to variations in the encoder-decoder LSTM input 740 

sequence length, MAR recharge rates and decision variable, before addressing the 741 

limitations and potential risks. 742 

4.1 Impact of Input Sequence Length of the Groundwater Level Prediction 743 

Model on Optimization Results 744 

The developed deep learning and multi-objective optimization framework effectively 745 

quantified competing objectives. However, as one of the key hyperparameters, which 746 

are user-defined settings that govern model architecture and training, the input sequence 747 

length m has a significant impact on the predictive performance of LSTM models 748 

(Gauch et al., 2021; Hosseini et al., 2024). While the configuration with m = 6 days was 749 

selected as suitable based on comprehensive training and testing performance metrics, 750 

the model with m = 9 days showed comparable robustness (Figure 6). To examine the 751 
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impact of this hyperparameter on optimization results, the 9-day model was integrated 752 

into the multi-objective framework, generating alternative Pareto front solutions 753 

(Figure 11). 754 

The results indicated that adjustments to m affect the objective function values across 755 

all objectives. Flood risks and water scarcity showed no significant differences (p > 756 

0.05) between the two configurations analyzed. Groundwater recovery objectives 757 

exhibited significant differences (p < 0.05) but maintained consistently positive 758 

objective function values. This demonstrated that the continuous maintenance of river 759 

flow was critical for effective groundwater recovery. 760 

Notably, changes of input sequence length (from 6 to 9 days) did not alter inter-761 

objective inverse or positive effects. Flood risk maintained inverse relationships with 762 

reservoir water scarcity and groundwater recovery, while water scarcity and 763 

groundwater recovery retained a positive relationship. Similarly, this change of m also 764 

did not affect the response of objectives across the different scenarios. When FLWL 765 

was elevated, flood risks and reservoir water scarcity losses significantly decreased (p 766 

< 0.05) when moving from m = 6 to 9 days configuration. At the same time, the inverse 767 

or positive relationships between objectives became weakened (the absolute value of ρ 768 

decreased). This indicated that increasing FLWL could reduce competition between 769 

multi-objectives optimization and promote system balance. Changes in m did not alter 770 

the relationships between objectives. However, its limitations still persist, as variations 771 

in sequence length may impact model performance under different hydrological 772 

conditions or when applied to new scenarios. 773 
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 774 
Figure 11. Two-dimensional matrix diagram of Pareto front competition when 775 
input sequence length was set to 9 days under (a) Scenario a, (b) Scenario b, and 776 
(c) Scenario c, illustrating the relationships among the three optimization 777 
objectives: flood risk, water scarcity, and groundwater recovery. The blue scatters 778 
show relationships between objectives, the red ellipses indicate the overall trend 779 
of the scatter points, the green box show the distribution of each objective within 780 
its respective scenario., and ρ reflects the strength of positive or inverse 781 
relationships. (d) compares the distributions of the three objectives across the 782 
three FLWL scenarios, revealing the sensitivity of the optimization outcomes to 783 
different reservoir water-level constraints. 784 

4.2 Impact of Managed Aquifer Recharge on Optimization Results 785 

Based on the quantified benefits of MAR on groundwater recovery as demonstrated 786 

in previous sections, this section explores its broader implications for the multi-787 
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objective optimization framework, particularly during the implementation of MAR, 788 

how the minimum discharge within the multi-objective optimization framework satisfy 789 

both ecological and recharge flow requirements. Consequently, Equation 6 was 790 

accordingly modified as follows: 791 

eco
t t MARQ Q Q                (11) 792 

where QMAR represents the flow required for different recharge rates [L3T-1], while other 793 

variables remain consistent with Equation 6. This modification ensures that the 794 

minimum release constraint not only maintains downstream ecological flow but also 795 

guarantees sufficient water availability for MAR implementation. 796 

Following this adjustment, the relationship between flood risk and water scarcity was 797 

examined, with results presented in Figure 12. Despite the adjustment in constraints, 798 

the inverse relationships between flood risk and water scarcity persisted. In the multi-799 

objective optimization process, MAR was represented as an increased minimum 800 

discharge constraint (Equation 11). Under this constraint, the simulations showed that 801 

MAR led to lower average flood risk but higher average reservoir water scarcity. This 802 

outcome is evident in all the inset box plots of Figure 12, where applying MAR shifts 803 

the mean values (cross symbols) downward for flood risk (brown columns, left without 804 

MAR to right with MAR) and upward for water scarcity (orange columns). This change 805 

might result from the increase in the minimum discharge constraint under MAR, which 806 

needs more water to be released downstream, thereby reducing flood risk while 807 

simultaneously increasing reservoir water scarcity losses at the end of the flood season. 808 

Statistical tests, as indicated by the p-values shown in each inset box plot, further 809 



 

45 
 

confirmed that these differences were significant (p < 0.05) only at the highest recharge 810 

rate of 300 m³ d⁻¹ (Figure 12f), while no significant differences (p > 0.05) were 811 

observed at lower recharge rates (Figures 12a–e). This is because at lower recharge 812 

rates, the changes in the minimum discharge constraint were relatively small, resulting 813 

in limited impacts on the optimization outcomes. 814 

  815 

Figure 12. The relationship between flood risk and water scarcity under different 816 
managed aquifer recharge (MAR) rates. (a)-(f) show the results under recharge 817 
rates of 50, 100, 150, 200, 250, and 300 m³ d⁻¹, respectively. Inset box plots compare 818 
flood risk (brown column) and water scarcity (orange column) without (left bar) 819 
and with (right bar) recharge measures. Cross (×) represents average value. 820 
Statistical tests p-values are also indicated in the inset box. 821 

Figure 12. The relationship between flood risk and water scarcity under different 822 

managed aquifer recharge (MAR) rates. (a)-(f) show the results under recharge rates of 823 

50, 100, 150, 200, 250, and 300 m³ d⁻¹, respectively. Inset box plots compare flood risk 824 

(brown column) and water scarcity (orange column) without (left bar) and with (right 825 

bar) recharge measures. Cross (×) represents average value. Statistical tests p-values 826 
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are also indicated in the inset box. Similar findings have been reported in previous 827 

studies. Schäffer et al. (2022) emphasized that maximum discharge constraints 828 

significantly affect the marginal water values (i.e., the opportunity cost of storing water 829 

for future power generation) as well as the operational strategies of hydropower systems. 830 

Helseth et al. (2022) demonstrated that environmental constraints could complicate 831 

scheduling problems by introducing state dependencies and non-convexities. 832 

Increasing downstream water demand could improve flood utilization efficiency as 833 

shown by Wang et al. (2022). These studies highlighted that variations in constraints 834 

influence optimization outcomes. Thus, defining and incorporating constraints, such as 835 

those introduced by MAR in this study, is crucial for achieving robust and balanced 836 

reservoir optimization outcomes, ensuring that floodwater utilization aligns with 837 

multiple objectives including ecological sustainability and groundwater recovery. 838 

4.3 Impact of Decision Variable on Optimization Results 839 

To assess the robustness of the optimization scheme, we evaluated the sensitivity of 840 

the results to the choice of decision variable. In Section 2.3.3, we initially used the 841 

outflow-to-inflow ratio as the decision variable (Decision Variable 1). As Yang et al. 842 

(2017) demonstrated, the efficacy of decision variables can differ significantly across 843 

scenarios, especially under uncertain or extreme events, potentially leading to 844 

suboptimal outcomes. Therefore, we introduced an alternative decision variable, i.e., 845 

the outflow relative to the previous day’s reservoir storage (Decision Variable 2). 846 

Subsequently, we applied this new decision variable to multi-objective optimization 847 

simulations under three FLWL scenarios, which were described in Section 2.3.1. The 848 
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comparative results are presented in Table 2. 849 

All objective values exhibited significant differences (p < 0.05) between the two 850 

decision variables across the three FLWL scenarios. Notably, minimum flood risk and 851 

reservoir water scarcity no longer reached zero in any scenario under Decision Variable 852 

2. Despite these quantitative differences, the variation trends of the objectives across 853 

scenarios remained consistent with those obtained under Decision Variable 1. 854 

Specifically, as the FLWL increased (from Scenario a to c), the mean values of all 855 

objectives decreased. Moreover, the inverse and positive relationships among flood risk, 856 

reservoir water scarcity, and groundwater recovery (see Supporting Information Figure 857 

S4) followed the same patterns described in Section 3.3. This indicates that while the 858 

choice of decision variable can significantly influence the absolute value of the 859 

objective functions, it does not alter the intrinsic interactions among the objectives. 860 

Table 2. Comparison of optimization objectives under different decision 861 
variables. Decision Variable 1 and 2 are the outflow-to-inflow ratio and the 862 
outflow relative to the previous day’s reservoir storage, respectively. 863 

Objectives Scenarios 
Decision Variable 1 Decision Variable 2 

p 
Average Range Average Range 

Flood Risk 

a 17.33 [0, 45.65] 12.63 [4.60, 25.56] <0.05 

b 5.53 [0, 13.29] 8.56 [4.56, 15.33] <0.05 

c 4.54 [0, 12.73] 7.85 [4.61, 13.07] <0.05 

Water 

Scarcity 

a 0.23 [0, 0.49] 0.36 [0.21, 0.51] <0.05 

b 0.11 [0, 0.23] 0.28 [0.11, 0.54] <0.05 

c 0.09 [0, 0.22] 0.23 [0.14, 0.36] <0.05 

Groundwater 

Recovery 

(10-5) 

a 6.92 [5.61, 8.42] 9.61 [7.67, 12.16] <0.05 

b 6.57 [5.56, 7.26] 7.55 [3.75, 10.29] <0.05 

c 4.42 [1.06, 7.17] 4.42 [2.55, 5.81] <0.05 

4.4 Advantages, Limitations and Potential Risks 864 

The developed deep learning and multi-objective optimization scheme, leveraging 865 
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an encoder-decoder LSTM architecture, offers advantages in groundwater level 866 

prediction and optimization. Deep learning models excel at capturing complex non-867 

linear dependencies from historical data. This is especially advantageous when 868 

complete data on source-sink terms are difficult to obtain, as the utilized encoder-869 

decoder LSTM can capture the underlying relationships in the system through data-870 

driven learning (Solgi et al., 2021). Moreover, deep learning models are 871 

computationally efficient, enabling them to process large datasets efficiently and 872 

integrate seamlessly into optimization schemes. This makes them valuable for large-873 

scale optimization tasks, whereas traditional physics-based models might be more 874 

computationally intensive (He et al., 2022; Tripathy and Mishra, 2024). 875 

Although this study advances a robust framework for multi-objective optimization 876 

of flood control, water storage, and groundwater recovery by integrating deep learning 877 

and 3D groundwater numerical modeling, several limitations constrain its scope and 878 

applicability, highlighting avenues for future work. First, a key limitation of using the 879 

deep learning model is its limited adaptability to replacing traditional physical models 880 

across diverse scenarios. Unlike process-based models governed by physical laws, the 881 

deep learning models rely solely on statistical patterns. Consequently, it may struggle 882 

to generalize to new, unseen conditions, especially in extreme hydrological events 883 

caused by climate change (Acuña et al., 2025). Model performance may degrade when 884 

applying to extreme conditions, highlighting the need for caution in using the deep 885 

learning model as a substitute for traditional physical models. 886 

Second, the framework’s exclusive focus on flood-season operations overlooks 887 
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critical non-flood season dynamics, particularly the regulation of groundwater 888 

extraction, which exacerbates depletion in vulnerable depression cone regions. Under 889 

climate change, integrating cross-seasonal strategies, such as augmenting flood-season 890 

recharge, while curtailing non-flood extraction through adaptive pumping controls 891 

(Balerna et al., 2024; Tang et al., 2024), could yield more sustainable outcomes by 892 

balancing annual water budgets and mitigating long-term groundwater stress.  893 

Finally, while MAR emerges as a promising tool for floodwater utilization, it 894 

introduces potential environmental risks, including water quality degradation and 895 

clogging, which could undermine ecological health if not rigorously managed (Fiori et 896 

al., 2025; Guo et al., 2023). To mitigate these issues, infiltration and pulsed injection 897 

can be applied (Page et al., 2014; Rodríguez et al., 2018), although these measures 898 

increase operational costs and limit economic feasibility. This necessitates expanded 899 

analyses, explicitly weighing recharge efficiency against water quality through coupled 900 

hydrogeochemical modeling.  901 

Despite these limitations and potential risks, the proposed framework’s broader 902 

applicability remains promising, as FU under diverse conditions (Ding et al., 2023; Liu 903 

et al., 2015) and groundwater recharge practices (Alam et al., 2020; Zhang et al., 2020) 904 

are well-established, supporting the effective integration of flood mitigation and 905 

groundwater recovery. Therefore, future work can evolve this framework into a more 906 

comprehensive, resilient tool for integrated water resource management applicable 907 

beyond the North China Plain, particularly under intensifying climate stress. 908 
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5. Conclusions 909 

This study advances integrated water resource management by developing a novel 910 

coupled framework that merges deep learning (encoder-decoder LSTM) with multi-911 

objective optimization (NSGA-II) and groundwater numerical modeling (MODFLOW) 912 

to optimize floodwater utilization in the Lincheng Reservoir system, North China Plain. 913 

The framework targets three key objectives: minimizing flood risk (defined as the 914 

cumulative exceedance of reservoir water levels above the flood limited water level 915 

(FLWL) during the flood season), reducing reservoir water scarcity (measured as the 916 

deviation from normal storage levels at the end of the flood season for reservoir), and 917 

maximizing groundwater recovery (quantified as the increase in groundwater levels at 918 

the end of the flood season resulting from varied reservoir discharge flows during the 919 

flood season). By dynamically adjusting reservoir operations across scenarios while 920 

ensuring ecological flows and downstream flood safety, the framework demonstrates a 921 

pathway for converting flood hazards into resources for groundwater recovery in 922 

vulnerable groundwater depression cone areas. The key conclusions are as follows: 923 

1. The encoder-decoder LSTM model exhibited high predictive accuracy for 924 

groundwater levels, with optimal performance at a 6-day input sequence (R² = 0.99 925 

and 0.93 respectively for training and testing) and robust results at 9 days (R² = 926 

0.97 and 0.92). This highlights the reliability of the framework in capturing 927 

temporal hydrological dependencies. 928 

2. Across all scenarios, flood risk exhibited inverse relationships with both water 929 

scarcity and groundwater recovery. Higher flood risk, driven by retaining more 930 



 

51 
 

water in the reservoir, reduced reservoir water scarcity through increased storage 931 

but limited groundwater recovery by decreasing discharge volumes, thereby 932 

reducing the water available for downstream recharge. Increasing the FLWL 933 

weakened these inverse relationships, achieving significant reductions in reservoir 934 

flood risk and water scarcity (84.9 and 61.9% respectively), with a moderate 935 

decrease (22.2%) in groundwater recovery due to lower discharge volumes. 936 

3. Maintaining ecological flows enabled groundwater recovery even under reduced 937 

total discharges, emphasizing that continuous river connectivity, rather than 938 

volume alone, drives groundwater recharge. This finding challenges conventional 939 

volume-focused strategies, advocating for flow continuity as an effective way for 940 

groundwater recovery. 941 

4. The MODFLOW model, with accurate replication of spatiotemporal 942 

groundwater variations (R² of 0.82–0.96), validated managed aquifer recharge 943 

(MAR) as an effective enhancement for groundwater recovery in depression cones. 944 

At 300 m³ d⁻¹ operated on 20 recharge wells during the 2023 flood season, 945 

maximum recovery reached 0.46 m, with effective recovery (>0.01 m) in 17.6% of 946 

the area. Incorporating MAR modified discharge constraints, resulting in lower 947 

flood risks and increased water scarcity, illustrating constraint-driven trade-offs 948 

that must be balanced in adaptive management. This quantifies MAR’s efficacy but 949 

highlights spatial heterogeneity and the need for site-specific optimization to 950 

maximize benefits.  951 

5. The proposed framework shows potential for broader application beyond the 952 
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North China Plain. By transforming flood hazards into recoverable groundwater 953 

resources through integrated reservoir operations and groundwater recovery 954 

measures, the framework offers a promising strategy for regions facing flood and 955 

groundwater depletion risks, advancing climate-resilient water management. 956 
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