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Abstract: Climate change has exacerbated global droughts and floods, further
disrupted the uneven temporal and spatial distribution of water resources, and therefore,
poses a significant challenge to water resource management. Flood utilization,
converting floodwater from hazard to valuable resource, is a key solution to this
challenge. However, existing flood utilization strategies predominantly focus on
surface water management through reservoir operations, overlooking integrated
optimization with groundwater systems, particularly the challenges of coupling
physical models with multi-objective algorithms for groundwater recovery. Here, by
ensuring ecological flow and downstream flood safety, a multi-objective optimization
framework employing deep learning was developed to integrate flood control, water
storage, and groundwater recovery. Reservoir operations were optimized through multi-
scenario simulations, and a 3D groundwater numerical model was employed to assess
the impact of managed aquifer recharge (MAR) using floodwater on groundwater
recovery. Results for the 2023 flood season (June to September) showed that,
increasing the flood limited water level (FLWL) reduced average reservoir flood risk
and water scarcity by 84.9% and 61.9%, respectively, while weakening their inverse
relationship. This indicates that raising FLWL improves individual objectives and
reduces conflicts for balanced optimization. Maintaining continuous ecological river
flow promoted groundwater recovery despite reduced total river discharge. MAR at 300
m? d! achieved effective groundwater recovery in 17.6% of the study area with a
maximum of 0.46 m. Overall, this study presents a novel framework coupling deep

learning, multi-objective optimization, and 3D groundwater modeling, enabling
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optimized surface water-groundwater regulation and enhanced floodwater utilization
for groundwater recovery.
Keywords: Floodwater utilization; Deep learning; Groundwater recovery; Multi-

objective optimization; Ecological flow; Managed aquifer recharge
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1. Introduction

Global climate change is expected to intensify the hydrological cycle (Tabari, 2020),

resulting in an increase in extreme precipitation events (Bloschl et al., 2017), leading

to larger flood frequencies (Chagas et al., 2022), and posing significant challenges to

water resource management, particularly in monsoon regions (Hirabayashi et al., 2013;

Yang et al., 2023). This increase in flood intensity and frequency poses threats to

ecosystems, economies, and human livelihoods (Bermudez et al., 2021). In response to

these challenges, innovative approaches such as floodwater utilization (FU) have been
developed, which converts floodwater from a hazard into a valuable resource (Wang et

al., 2023). This strategy has been increasingly adopted in integrated river basin

management to balance water allocation (Li et al., 2021) and reservoir operation

optimization to mitigate flood risks and water scarcity (Jiang et al., 2019), and enhance

storage and recharge, while simultaneously controlling flood risks through strategic
reservoir operations and flow regulation.

FU strategies typically involve drawing down reservoirs before the flood season to
create additional storage capacity, capturing and storing excess floodwater during the
flood season, and releasing the stored water for beneficial purposes such as irrigation

and hydropower generation during the non-flood season (Wang et al., 2023).

Maximizing reservoir operation benefits was achieved through multi-stage (Liu et al.

2015; Wei etal., 2022) or dynamic flood limited water level (FLWL) adjustments (Ding

et al., 2023). Furthermore, the joint operation of multiple reservoirs (Jain et al., 2023)

and the strategic use of flood retention areas (Bellu et al., 2016) have proven effective

4
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in optimizing FU. Where applied, these measures have reduced flood damage and

enhanced floodwater utilization efficiency (Mateo et al., 2014).

However, while these FU strategies primarily focus on surface water management,
research on the integrated optimization of groundwater systems, a fundamental

component of the hydrological cycle (Irvine et al., 2024), remains limited. As critical

hydrological components, groundwater resources undergo accelerated global depletion,

threatening ecosystems and livelihoods (Jasechko et al., 2024). This is particularly
severe in regions such as the North China Plain, which is one of the world’s largest

groundwater depression cones (Chen et al., 2020), highlighting the urgency of

groundwater recovery efforts to sustain ecosystems and human activities. Consequently,
effective groundwater recovery measures are imperative to counteract depletion and
sustain ecosystems and livelihoods.

Accurate simulation of groundwater dynamics is essential for optimizing resource

allocation in integrated water management (Haaf et al., 2023). Numerical simulation,

the most widely used approach for modeling groundwater dynamics, has significantly
contributed to analyzing spatial and temporal groundwater changes and quantifying the

effects of various measures on groundwater dynamics (Condon et al., 2021). Roy et al.

(2024) employed a MODFLOW model to determine the optimal groundwater recharge
rate and to minimize groundwater decline. Lyu et al. (2025) employed an enhanced
version of the SWAT-MODFLOW model to evaluate the effects of ecological recharge
from reservoirs and reclaimed water releases on groundwater recovery. However,

physical models might face limitations when integrated with optimization algorithms
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owing to their high computational intensity (Asher et al., 2015), as groundwater
dynamics are influenced by multiple hydrogeological factors, including heterogeneity

in subsurface hydraulic conductivities and extraction intensities (Kuang et al., 2024).

Recent advancements in deep learning, particularly Long Short-Term Memory
(LSTM) networks, have yielded robust computational tools for groundwater prediction

(Tripathy and Mishra, 2024). Due to their predictive accuracy (Cui et al., 2024) and

potential for integration with optimization algorithms (He et al., 2022), LSTM networks
have emerged as a preferred approach for analyzing nonlinear temporal features in

hydrological time-series data (Hochreiter and Schmidhuber, 1997). However, analyzing

the impacts of environmental factors on groundwater dynamics necessitates multi-step
prediction approaches. To address error accumulation in such multi-step predictions,
modifications to the LSTM architecture are necessary to minimize error propagation

(Zhuang et al., 2023). The encoder-decoder LSTM architecture, which can effectively

mitigate these issues by capturing temporal dependencies to improve prediction
accuracy, has been extensively applied to temporal pattern recognition tasks, including

natural language processing and activity forecasting (Deng et al., 2019). This

architecture consists of encoder-decoder modules based on recurrent neural networks.
The encoder transforms variable-length sequences into fixed-dimensional context
vectors, while the decoder produces predictions by processing these vectors.
Comparative analyses demonstrate that the encoder-decoder LSTM framework offers
superior forecasting precision compared to conventional deep learning approaches

(Wunsch et al., 2021; Xiang et al., 2020).
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Despite many studies exploring floodwater utilization (FU) by reservoir regulation
and the application of deep learning for groundwater level prediction, few studies have
investigated the effects of using flood resources to promote groundwater recovery, by
combining groundwater recovery with FU as a framework, leaving a critical gap in
addressing the escalating global challenges of climate-driven floods, droughts, and
widespread aquifer depletion. To address the limitations of prior studies, this study
developed a framework, which embeds a deep learning model to predict groundwater
levels, coupled with FU in multi-objective optimization. This framework also used a
3D groundwater numerical simulation to evaluate the spatial effects of managed aquifer
recharge (MAR) using floodwater resources. The Lincheng Reservoir and its associated
downstream groundwater depression cone in the North China Plain served as the
testbed for this study.

The specific objectives of the study were: (1) to develop an encoder-decoder LSTM
model for predicting groundwater levels and integrate it as a component of the objective
function in multi-objective optimization; (2) to establish a multi-objective optimization
framework that balances flood control, water storage, and groundwater recovery under
constraints of ecological flows and flood safety; (3) to assess the effects of managed
aquifer recharge (MAR) using floodwater on groundwater recovery through a 3D
numerical model; (4) to evaluate the impacts of variations in deep learning
hyperparameters (e.g., input sequence length) and MAR recharge rates on the
framework’s performance and optimization outcomes. The overall technical framework

and workflow are illustrated in Figure 1. As depicted in Figure 1, the framework begins
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with data preparation in Step 1. Building on this, this study integrates deep learning into
multi-objective optimization in Step 2 to jointly optimize flood control, water storage,
and groundwater recovery. Subsequently, in Step 3, a numerical groundwater model
(MODFLOW) is developed to quantify the effects of MAR on groundwater recovery,
thereby transforming floodwater obtained from the previous step into a sustainable
resource for groundwater restoration. In Step 4, this study discusses key factors, such
as input sequence length and MAR rates, that influence the optimization outcomes and
the potential risks involved. This approach provides a methodology for integrated water
resource management in regions with groundwater overexploitation and intensive

agricultural irrigation.

Step 1: Data Preparation

Inflow to [[Outflow from||Reservoir Water Level-||Groundwater Drocinitati .
recipitation||Evaporation

Reservoir || Reservoir || Storage Relationship Level
Step 2: Optimization Scheme Step 3: Groundwater Modeling
Objective Functions: MODFLOW  Groundwater dynamics

455
E

e Min Flood Risk
e Min Water Scarcity
e Max Groundwater Recovery (DL)

54521
5

449
5

g 446
5

§
24431

2 R2=0)
o 4o . © 440 MSE = 0.004 ~
DL for GWL PredICtlon. 23/06/15 23/07/15 23/08/15 23/09/15
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. S AR W T\ T\ i
evaporation; reservoir discharge N\ % NN ¢ N
e Output: downstream groundwater level o o’ l . o o
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Step 4: Influencing Factors and Potential Risks

| i
L[ LsT™ |
| Decoder [
! i
' |

i

|

Spatial effects of MAR
using flood resources from Step 2

e Impact of Input Sequence Length on Optimization Results

e Impact of MAR recharge rates and decision variable on optimization results

e Advantages, limitations and potential risks

Figure 1. Schematic of the technical roadmap developed in this study, integrating
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an optimization scheme for reservoir flood risk mitigation, water scarcity
reduction, and groundwater recovery benefits. The MODFLOW model was used
to evaluate the effectiveness of MAR, utilizing flood resources generated by the
optimization scheme. The study also investigates key influencing factors and
potential risks. Abbreviations in the figure: DL, deep learning; GWL,
groundwater level; MAR, managed aquifer recharge.

2. Materials and Methods

2.1 Study Area

The Lincheng Reservoir is located in Xingtai City, Hebei Province, China and is part
of the Ziya River system within the Haihe River basin (Figure 2a), which lies in a warm
temperate continental monsoon climate zone. The average annual temperature ranges
from 10 to 13°C, with significant variability in both inter-annual and intra-annual
precipitation. Annual precipitation averages 490-600 mm, with 75-80% occurring
during the summer months (July-August). Flood season precipitation primarily occurs
in the form of high-intensity storms between late July and early August, resulting in an
uneven temporal distribution of precipitation concentrated in short, intense periods.

The Lincheng Reservoir is primarily designed for flood control and water supply
management. With a catchment area of 384 km?, its key water levels include the dead
storage level (112.0 m), the flood limited water level (FLWL, 120.48 m), and the normal
storage level (125.5 m). The discharge from Lincheng Reservoir flows into the Zhi
River, which then joins the Fuyang River (Figure 2b). The Zhi River basin is located
within a representative shallow groundwater depression cone (GDC) in the North China
Plain, i.e., the Ning-Bai-Long Cone (see the gray shaded area in Figure 2b), where

groundwater levels have undergone significant decline. Since 1980, the development
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of the GDC has progressed through three primary stages (Figure 2¢). From 1980 to
2014, the GDC expanded rapidly, with the average groundwater level experiencing a
substantial decline of 30.3 m. Between 2014 and 2018, the expansion of the GDC
slowed and the area-wide average groundwater level decreased again by 1.62 m. Since
2018, the ongoing implementation of over-extraction control measures has significantly
reduced the expansion of the GDC, and as a consequence, the average groundwater
level in the GDC had increased by 2.84 m in 2022 compared to 2018.

Considering these hydrogeological characteristics and the need for continued
management of groundwater depletion, the study focuses on the Lincheng Reservoir
and its downstream Zhi River basin, where optimized floodwater utilization offers an
effective approach for coordinating multiple water management objectives, including

flood control, water storage, ecological flow maintenance, and groundwater recovery.
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Figure 2. Overview of the study area: (a) Regional setting of the Haihe River basin
and Ziya River system, with an inset map illustrating the geographical location of
the Haihe River basin in China; (b) Hydrological characterization, including the
Lincheng Reservoir, natural rivers, the groundwater depression cone, and
hydrological monitoring stations; (¢) Temporal evolution of the average

groundwater level in the Ning-Bai-Long groundwater depression cone since 1980.

2.2 Data Sources

To support the integrated modeling framework for reservoir operations and
groundwater dynamics in the Lincheng Reservoir and Zhi River basin, a comprehensive
suite of hydrological, geological, and geospatial datasets was assembled from multiple
authoritative sources. Daily inflow and outflow records for the reservoir, critical for
simulating water balance and operational scenarios, were provided by the Xingtai
Hydrological Survey and Research Center in Hebei Province, China. Meteorological

monitoring data, including daily precipitation, potential evaporation, along with
11
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groundwater level observations, were sourced from the Hebei Provincial Hydrological
Survey and Research Center to capture temporal variability in recharge and depletion
patterns. Complementing these, high-resolution geospatial data, including a 90-m
Digital FElevation Model (DEM) from the Geospatial Data Cloud
(http://www.gscloud.cn) and 30-m land-use classifications from the GLC-FCS30
dataset (https://zenodo.org), enabled accurate delineation of the catchment topography
and surface characteristics influencing runoft and infiltration processes. For the 3D
groundwater numerical model, key hydrogeological parameters, including geological
borehole logs, specific yields, hydraulic conductivities, infiltration coefficients, and
groundwater extraction volumes, were obtained from the Ninth Geological Brigade of

the Hebei Bureau of Geology and Mineral Resources.

2.3 Methods

2.3.1 Scenarios Setting of Flood Limited Water Level

To quantify the effects of changes in the flood limited water level (FLWL) on
floodwater utilization (FU), this study developed three FLWL scenarios: (a) a fixed
FLWL of 120.48 m, (b) a multi-stage FLWL, and (c) a fuzzy-segmentation FLWL,
whereby the flood season was divided into pre-flood, main-flood, and post-flood

seasons using fuzzy set theory (Mu et al., 2022). Detailed methods for flood season

segmentation and fuzzy segmentation of FLWL determination are provided in the
Supporting Information Text S1. Based on this segmentation, the FLWL for scenario
(b) was set at 120.48 m for the pre-flood and main flood seasons and 123.48 m for the

post-flood season. This configuration was recommended by the Hebei Provincial Water
12
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Resources Department, based on their empirical assessments of historical flood patterns
and reservoir safety. Nevertheless, alternative FLWL configurations are feasible within
the proposed framework in this study. In scenario (c) the FLWL for each period was
dynamically adjusted by linking the available flood control storage capacity to the
varying reservoir levels across the pre-flood, main-flood, and post-flood seasons, as
derived from historical precipitation patterns using fuzzy set theory. Detailed
procedures and equations are provided in Supporting Information Text S1. Figure 3

illustrates the flood season segmentation and FLWL variations across scenarios.

126 1

€) - ==+ Fixed FLWL
; T — Multi-stage FLWL f
‘ |
= Fuzzy segmentation FLWL J;
122 4 ‘J‘\
Pre-flood season Main-flood season | Post-flood season
|
120 T T T T
23/06/15 23/07/15 23/08/15 23/09/15

Date

Figure 3. Variations in flood limited water level (FLWL) under different scenarios:
the black dashed line represents fixed FLWL (Scenario a), the blue solid line
indicates multi-stage FLWL (Scenario b), and the red solid line depicts fuzzy
segmentation FLWL (Scenario c).
2.3.2 Groundwater Level Prediction Using encoder-decoder LSTM

This study adopted an encoder-decoder LSTM model, as its architecture serves as an
extension of the LSTM and can better handle longer and more complex input sequences.
In this architecture, the encoder processes a sequence of inputs (such as precipitation

and evaporation) into a summarized representation that captures the essential temporal

information (Sutskever et al., 2014), and then the decoder uses this information to

predict the target variable (such as groundwater level). Compared to a simple LSTM,

this design enables the model to capture long-term dependencies more effectively and

13
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reduces error accumulation during recursive forecasting.

The adopted encoder—decoder LSTM framework effectively represents the dynamic
interaction between reservoir operations and groundwater responses. As depicted in
Figure 4a, the encoder sequentially processes multiple hydrological and meteorological
variables over several preceding time steps, capturing their temporal dependencies and
compressing the information into a temporary state vector. At each time step ¢, the input
vector x: comprises historical groundwater levels, precipitation, potential evaporation,
and reservoir discharge. After processing an input sequence of length m days, the
encoder outputs the final hidden and cell states (4., c.), which encapsulate the temporal
dependencies of the sequence. The decoder then initializes with these states and
produces the predicted groundwater level at the next time step (ym+:) through a fully
connected layer.

Both the encoder and decoder are composed of LSTM units that share the same
internal gate structure and information-update mechanism. As shown in Figure 4b, the
LSTM unit consists of three gates: the forget gate, input gate, and output gate. The
forget gate (f/) determines the proportion of the previous cell state c-; to discard,
allowing the model to remove outdated information. Subsequently, the input gate (i)
regulates the current external information (i.e., input x/) and generates candidate cell
state g, that represents potential new memory. The updated cell state c; combines the
past memory, weighted by the forget gate, with the candidate memory, weighted by the
input gate. Finally, the output gate (or) selects features from the updated cell state ¢/ to

produce hidden state 4:, which serves as the output to the next time step. Detailed

14
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equations and descriptions are provided in Supporting Information Text S2.
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Figure 4. Model architecture: (a) Encoder—decoder LSTM framework for
groundwater-level prediction. The encoder processes an input sequence of m time
steps (x1, X2, ..., Xu), where each x; contains historical groundwater levels,
precipitation, potential evaporation, and reservoir discharge. The decoder
converts the encoded temporal information into the predicted downstream
groundwater level (y.+7). (b) Basic LSTM layer structure for the time step 7 to ¢ +
1, with three essential gates including forget, input, and output gates that regulate
the cell state update and control the information flow through the network..
Abbreviations in the figure: FC, fully connected layers; GWL, groundwater level.

As an important hyperparameter of encoder-decoder LSTM, temporal dependencies
parameter (input sequence length) significantly influences model performance,
particularly in capturing both short-term fluctuations and long-term trends in

hydrological time series (Wunsch et al., 2021). To evaluate the model performance

under varying input sequence length during the 2023 flood season, the dataset was
partitioned into a training period (January 1, 2018 to May 31, 2023) and a testing period
(June 1, 2023 to September 30, 2023). The methodological workflow comprised the

following six phases:

15
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1) Data preprocessing: normalization was applied to address dimensional
discrepancies among heterogeneous features.
2) Input sequence length configuration: the length m was determined experimentally,
ranging from 1 to 15 days, through parametric trials. This range was chosen to
balance short-term and medium-term dependencies, ensuring that hydrological
fluctuations can be effectively captured.
3) Network architecture: the encoder-decoder was coupled with the LSTM
architecture. A fully connected layer converted decoder states into normalized
predictions.
4) Model training: the Adam optimizer was used to minimize mean squared error
(MSE) loss with a learning rate of 0.001. The training configuration included a batch
size of 32 and a maximum of 200 epochs.
5) Post-processing: predictions were denormalized to derive GWL values.
6) Performance evaluation: prediction accuracy was quantified using the coefficient
of determination (R?€[0,1]) and mean squared error (MSE€E[0,+°)), with perfect
predictions achieved when R? =1 and MSE = 0.
2.3.3 Coupling Framework of Deep Learning and Multi-Objective
Optimization
The coupled deep learning and multi-objective optimization framework was
developed for the Lincheng Reservoir to optimize flood control, water storage, and
groundwater recovery. This framework incorporates flood limited water level (FLWL)

variations across operational scenarios to assess the impacts of strategies on
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multifunctional performance. The Non-dominated Sorting Genetic Algorithm II

(NSGA-II) (Deb et al., 2002) was utilized to identify the Pareto frontier (i.e., the set of

non-dominated solutions representing optimal trade-offs among competing objectives)
under constraints.
2.3.3.1 Objective Functions

The developed multi-objective optimization framework incorporated the following
objective functions:

The first is the reservoir flood risk during reservoir operation, which was quantified
as the exceedance magnitude above FLWL. The corresponding objective was

formulated to minimize the cumulative excessive flood damage as:

min £ =iff (D

t=1
where T represents the total number of scheduling periods, and ﬁ is the relative flood

exceedance in period #, defined as:

fon-whwt e
= @

0 W<w
where w  and th represent the actual reservoir storage and the storage
corresponding to the FLWL at the period ¢ [L?], respectively.

Water storage benefits were quantified by the ability of the reservoir to recover to the
normal storage level after the flood season. The water scarcity objective aimed to

minimize terminal storage deviation by:

) W —Ww_
min F, ZT” 3)

N

where W denotes the storage capacity at normal storage level [L?] and W_,
17
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represents the reservoir storage at the end of the regulation period [L?].
Groundwater recovery benefits were evaluated through post-regulation groundwater
level rise relative to baseline operations. The groundwater recovery objective

maximized groundwater level elevation gain by:

GWL-GWI,
max f === ©

‘base

where GWL is the encoder-decoder LSTM predicted groundwater level under
operational schemes [L], and GWL,,, denotes the baseline groundwater level at the
end of the flood season [L] without floodwater utilization.

2.3.3.2 Constraint Conditions

While minimizing the objective function the following constraints were used for the
water balance:

W+l,—R., =W, (%)
where W and W, are the reservoir storage volume at period ¢ and r+1 [L?]. 1,
and R, are the inflow and outflow volume at period #+1 [L?], respectively.

The constraint on ecological flow was employed as:

Q20" (6)

where J represents the downstream ecological flow at period ¢ [L>T™'], calculated

using the Tennant method (Tennant, 1976).

The constraint on downstream flood safety was defined as

0<0. (7)
where O denotes the maximum discharge for downstream flood protection [L>T-

1. Q... was determined through hydrological frequency analysis using Pearson type
18
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III distribution (Ji et al., 1984).

Finally, a constraint on reservoir storage was applied by:

Wi SW SW, ®)
where W. and W._.  are the reservoir storage correspond to dead storage level and

normal storage level storage, respectively [L>].
2.3.3.3 Optimization Algorithm Implementation

The 2023 extreme flood event in the Haihe River Basin was utilized as a case study
to optimize daily reservoir operations, with the outflow-to-inflow ratio as the decision
variable, which provides a normalized measure of reservoir release relative to incoming
water volumes, thereby enabling flexible and scalable optimization across varying
inflow conditions, while avoiding reliance on absolute outflow values that may
fluctuate significantly with hydrological variability.

To balance the competing objectives of flood risk, water scarcity, and groundwater
recovery using this decision variable, a multi-objective optimization model was
developed and solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-

IT) (Deb et al., 2002). NSGA-II enhances computational efficiency through fast non-

dominated sorting and crowding distance mechanisms, while exhibiting robust

performance across diverse engineering applications (Verma et al., 2021). Parameter

configurations included a population size of 100, a maximum of 1,000 generations, a
crossover probability of 0.9, and a mutation probability equal to the inverse of the
number of decision variables-

Iterative optimization produced constrained discharge schemes, resulting in a non-
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dominated solution set across the three objectives defined. The projection pursuit

method (Han et al., 2025) was utilized for Pareto front analysis. This method projects

high-dimensional solutions onto a lower-dimensional subspace, facilitating quantitative

analysis and decision-making, while mitigating the curse of dimensionality.
Additionally, Spearman’s rank correlation coefficient was calculated for the

objective function values to investigate relationships among the objectives. The

Spearman’s rank correlation coefficient (p) is calculated by:

_ 62 di2 (9)
N(N*-1)

p=1
where d; represents the difference between the ranks of corresponding values for each
objective pair, and N denotes the number of observations.
2.3.4 Evaluation of Groundwater Recharge Measures

A three-dimensional groundwater numerical model was developed using the
MODFLOW model to simulate the effectiveness of managed aquifer recharge (MAR)
utilizing flood resources. Based on Darcy’s law and the water balance principle, a

system of partial differential equations was employed to simulate the groundwater flow

numerically:

PR LNy S L
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where Ky, K, and K: are the values of hydraulic conductivity [LT'] along the x, y and z

coordinate axes in the simulation region &, 4 is the hydraulic head [L], ¢ is the
20
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source/sink term [LT™'], u is the specific yield, 4o is the initial head [L], /0 is the upper
boundary condition, /7 is the Dirichlet boundary condition, /> is the Neumann
boundary condition, # is the outward normal direction of the Neumann boundary, ¢ is
the lateral flux per unit area and per unit time at the Neumann boundary [LT'], and Kx
is the hydraulic conductivity in the normal direction at the boundary [LT'].

The simplification of boundary conditions was critical for the groundwater numerical
simulation. Rivers can be simplified as Dirichlet conditions, while the boundaries
between different hydrogeological zones can be simplified as Neumann conditions
(flux boundary), with flow values calculated using Darcy’s law based on multi-year
groundwater level data. Therefore, as shown in Figure 5a, the northern Wu River and
the southern Beili River were designated as Dirichlet boundary conditions. The western
boundary, representing the boundary between the Taihang Mountains and the North
China Plain, was designated as a Neumann boundary condition. The main channel of

Zhi River was implemented as an internal river boundary condition.
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Figure 5. Overview of the 3D groundwater modeling area in the Zhi River basin
for (a) boundary conditions and key features, including recharge wells (blue dots),
geological boreholes (black dots), monitoring wells (blue triangle), with elevation
contours in meters, and distributions of (b) hydraulic conductivity, (¢) specific
yield, and (d) infiltration coefficient.

Based on borehole data (Figure 5a), the aquifer system was vertically discretized into
three layers: an unconfined aquifer (Layer 1), a semi-confined aquifer (Layer 2), and a
confined aquifer (Layer 3). The absence of consistent impermeable layers between the
unconfined and semi-confined aquifers results in a strong hydraulic connection. Given
that the study area is located in a typical shallow groundwater depression cone (Figure
2b), Layers 1 and 2, with depths ranging from 13 to 60 m, and 80 to 150 m, respectively,

were selected as the primary focus of this study.

Source terms included lateral recharge, precipitation infiltration, and irrigation return
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flow. Sink terms included lateral discharge, groundwater extraction, and actual
evapotranspiration. However, the groundwater table in this region typically exceeds 4
m in depth, which surpasses the maximum evaporation depth for unconfined aquifers.
When the groundwater table exceeds this maximum depth, the connection between

groundwater and evapotranspiration weakens or disappears (Condon and Maxwell,

2019). Consequently, actual evapotranspiration was set to zero in the sink terms.
Detailed calculations of the source and sink terms are provided in Supporting
Information Text S3. To assess the impact of the omission of evapotranspiration and the
flow boundary condition, a sensitivity analysis was conducted. The results of this
analysis are presented in Supporting Information Text S4.

The groundwater level on May 31, 2023 was set as the initial hydraulic head, with
daily stress periods spanning June 1, 2023 to September 30, 2023 (122 simulation days).
To evaluate MAR effectiveness, this study established 20 recharge wells along a cross-
section of the Zhi River (see Figure 5a). Six recharge intensity gradients (50-300 m* d-
! with increments of 50 m* d"!) were implemented to quantify the effects of MAR using

floodwater.

3. Results

This section presents the outcomes derived from the integrated multi-scenario
framework coupling deep learning with multi-objective optimization and the three-
dimensional groundwater numerical model. We assessed the performance of the
encoder-decoder LSTM model in predicting groundwater levels and the groundwater

numerical model in predicting groundwater dynamics. Furthermore, we characterize
23
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the Pareto frontier distributions, identify the best and worst solutions for each objective
function across the different scenarios and quantify the effects of MAR under varying

floodwater rates.

3.1 Ecological Flow and Maximum Discharge

As critical constraints, the determination of ecological flow and maximum discharge
directly influenced the optimization outcomes. The Tennant method was employed to
calculate historical monthly average river flow, which served as the baseline for
ecological flow assessment due to its wide applicability under limited flow data
conditions. Long-term records showed recurrent zero-discharge episodes during the
flood season, which depressed the multi-year monthly means. As an illustration, during
the 2023 flood season there were 57 consecutive zero-flow days from June 1 to July 27
(Figure S1 in Supporting Information). Accordingly, to maintain suitable aquatic
habitats, ecological flow thresholds were set at 60% of monthly averages during flood
seasons and 30% in non-flood seasons (Table 1), since flows within 60—100% of the
natural regime sustain good habitat conditions, while 30—60% meet basic ecological

requirements (Tennant, 1976). Implementing these ecological flow constraints in 2023

eliminated downstream river drying during the flood season, reducing zero-flow days
from 57 to 0, which effectively restored continuous flow connectivity and improved the
stability of downstream aquatic habitats.

Table 1. Results of multi-year average ecological river flow calculations (1961-
2023).

Month Average River Flow Ecological River Flow
(m3 S-l) (m3 S-l)
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1 0.113 0.034
2 0.105 0.032
3 0.574 0.172
4 0.871 0.261
5 1.075 0.322
6 0.833 0.500
7 1.551 0.930
8 2.339 1.404
9 0.584 0.350
10 0.723 0.217
11 0.474 0.142
12 0.294 0.088

Historical extreme discharge events were analyzed through empirical frequency
analysis of annual maximum discharge records. Documented events included a 200-
year return period flood (2,448 m*s!) in 1963 and a 100-year return period flood (1,016
m?3 s7') in 1996. The unified empirical frequency analysis, combined with Pearson Type
IIT distribution curve fitting, demonstrated excellent model performance (R?*=0.96),
confirming the ability of the distribution to statistically characterize discharge extremes
(Figure S2 in Supporting Information). When adopting a 2% exceedance probability
standard (i.e., a 50-year return period), the maximum discharge for flood safety was
determined to be 734 m? s, which was selected to ensure adequate flood protection for
downstream urban areas.

These two constraints, including minimum ecological flow and maximum discharge
threshold, jointly defined the feasible solution space of the optimization process. The
minimum ecological flow limits excessive water retention in the reservoir, thereby
ensuring continuous downstream flow connectivity even under low-inflow conditions.
In contrast, the maximum discharge threshold limits excessive flood releases, thereby
preventing downstream flood hazards. Consequently, these constraints confined the
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optimization results within a reasonable range, ensuring that downstream ecological

requirements were satisfied while maintaining sufficient flood-control capacity.

3.2 Groundwater Level Prediction Effect

To optimize the predictive accuracy of the encoder-decoder LSTM model, we
evaluated its performance by tuning the input sequence length (m), which governs the
temporal dependency window through which the model captures hydrological memory.
In this context, m represents the time horizon over which antecedent groundwater levels,
precipitation, potential evaporation, and reservoir discharge collectively influence
groundwater dynamics. Short sequences may fail to capture delayed hydrological
feedback, whereas long sequences may introduce redundant temporal information.
Comparative performance metrics across different m varying from 1-15 days are
illustrated in Figures 6a-o. While maintaining superior training performance (R?>0.93,
MSE < 0.2) for all m, testing accuracy showed notable variability. m of 5-11 days
yielded robust testing set performance (R? > 0.85, MSE < 0.02), indicating strong
correlations between hydrological inputs (including precipitation, evaporation, and
discharge) and groundwater levels. The model performed optimally on the testing set
at m = 6 days (R?= 0.93, MSE = 0.008), followed closely by m = 9 days (R? = 0.92,
MSE = 0.010). This superior performance corresponds to the characteristic lag between
precipitation, evaporation, reservoir releases, and groundwater level responses,
indicating that the model effectively captured short-term surface—subsurface
interactions. Accordingly, these two configurations were selected for integration into

the coupling framework in subsequent studies: m = 6 for the primary groundwater level
26



493

494

495

496

497
498
499
500
501
502

503

504

505

predictions in the coupling framework due to its superior performance, and m = 9 for

subsequent sensitivity analyses to assess the robustness of optimization outcomes.
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Figure 6. Results of the groundwater level prediction of the encoder-decoder
LSTM Model: (a)-(0) model performance on the training and testing sets for input
sequence length of 1-15 days; (p) fitting effect of groundwater dynamics with an
input sequence length of 6 days, where the black solid line, blue solid line, and red
dashed line represents the observed, predicted groundwater level, and the trend of
groundwater level changes during the prediction period.

The encoder-decoder LSTM model performed effectively in predicting groundwater
dynamics at an input sequence length of 6 days. As demonstrated in Figure 6p, the

model achieved high predictive performance, with training period accuracy (R*=0.99)
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and testing period generalization capacity (R*=0.93).

The predicted groundwater level series closely matched the observed values over
time throughout the monitoring period, even during extreme water level fluctuations.
Additionally, groundwater levels exhibited an upward trend throughout the prediction
period, with a long-term trend (see the fitted line in Figure 6p) indicating an average
annual groundwater recovery rate of 1.13 m, which resulted from the implementation
of effective groundwater management and control measures in the study area.
Consequently, this m = 6 configuration was selected for groundwater prediction in

subsequent multi-objective optimization.

3.3 Pareto Frontier Distribution

Based on the previously determined input length of m = 6 days, the encoder-decoder
LSTM model was incorporated into the coupled deep learning and multi-objective
optimization framework. Through iterative optimization computations, this study
generated the two-dimensional projections of the original three-objective Pareto front
for the Lincheng Reservoir system under varying FLWL scenarios (Figure 7). The
depicted box plots (the diagonal graphs in Figure 7) quantitatively characterize the
distributional properties of each objective, while the scatter plots (the off-diagonal
graphs in Figure 7) illustrate the inverse and positive relationships among competing
objectives. Additionally, the Spearman’s rank correlation coefficient (p) reflected the
strength of these relationships. Negative correlations (p < 0) denote inverse
relationships, where improvements in one objective (e.g., reducing reservoir flood risk)

come at the expense of another (e.g., increasing reservoir water scarcity), necessitating
28
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compromises in decision-making to balance competing priorities. In contrast, positive
correlations (p > 0) indicate advancements in one objective simultaneously support or
enhance the other, enabling optimization without inherent conflicts. Figure 7 shows that
there exists a detectable inverse relationship between the reservoir flood risk and
reservoir water scarcity objectives across all scenarios. The negative p values among
these two factors (all below -0.99) in all scenarios indicated that it was challenging to
reduce both reservoir flood risk and water scarcity simultaneously through optimized
scheduling. Reservoir water scarcity objectives exhibited positive relationships with
groundwater recovery targets (p > 0.60 in all scenarios), while reservoir flood risk
objectives demonstrated inverse characteristics with groundwater recovery (p < -0.59
in all scenarios). When reservoir discharge decreased, water storage in the reservoir
increased, more inflow was retained within the reservoir, and consequently elevating
reservoir flood risk during the flood season while reducing reservoir water scarcity risk
at the end of the flood season. Meanwhile, the reduced downstream release decreased
the available infiltration, leading to weaker groundwater recovery effects. Therefore,
reservoir flood risk exhibited inverse relationships with both reservoir water scarcity
and downstream groundwater recovery, whereas reservoir water scarcity and
groundwater recovery showed a positive relationship. This outcome is consistent with
the fundamental principles of water balance in the hydrological cycle.

The groundwater recovery targets calculated in all scenarios were relatively small,
with values on the order of 10°. These values are dimensionless, as they were calculated

as the ratio of groundwater recovery to the original groundwater level, representing

29



550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

relative rather than absolute changes. This confirmed that relying solely on discharge
flow regulation for groundwater recovery was substantially limited and further
indicated that, within the imposed operational constraints, the variations in reservoir
discharge induce only minor changes in downstream river flow compared with other
groundwater source and sink terms.

With the transition from Scenario a to Scenario ¢, p between reservoir water scarcity
and groundwater recovery decreased from 0.872 to 0.612, while that between reservoir
flood risk and groundwater recovery was also weakened from —0.872 to —0.598. This
weakening of both positive and negative correlations arises because raising the FLWL
allowed more water to be stored in the reservoir, increasing its storage capacity. As a
result, both reservoir flood risk and reservoir water scarcity risk declined, whereas
groundwater recovery diminished because reduced downstream releases recharge led
to less infiltration. This adjustment increased the influence of storage capacity on both
flood risk and reservoir water scarcity, while groundwater recovery remained primarily
controlled by reservoir discharge. Consequently, elevating the FLWL across different
scenarios reduces the direct competition between flood control and reservoir water
storage, enabling simultaneous enhancements in flood control safety and water storage
benefits. These shifts altered the mechanisms linking the objectives, thereby attenuating

the strength of their inverse or positive relationships.
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Figure 7. Two-dimensional matrix diagram of the Pareto front for an input
sequence length of 6 days for (a) Scenario a, (b) Scenario b, and (¢) Scenario c,
illustrating the relationships among the three optimization objectives: flood risk,
water scarcity, and groundwater recovery. Blue scatter points represent the
optimized solutions, red ellipses indicate the overall inverse or positive trends
between objectives, and p quantifies the strength and direction of these
relationships. Green boxplots along the diagonal show the distribution of each
objective within its respective scenario. (d) compares the distributions of the three
objectives across the three FLWL scenarios, revealing the sensitivity of the

optimization outcomes to different reservoir water-level constraints.

Adjustments to FLWL induced substantial changes in the Pareto front objective
values (Figure 7d). Increasing FLWL (Scenarios a-c) reduced flood risks by 84.9% and

water scarcity risks by 61.9%, confirming that an increase in FLWL within safe
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operational thresholds enables the dual-objective optimization of flood control and
water storage. This improvement arises because a higher FLWL increases the storage
capacity of the reservoir, thereby lowering the probability of FLWL exceedance while
allowing more water to be retained for subsequent use, which consequently reduces
water scarcity losses at the end of the flood season. However, the accompanying
decrease in downstream discharge reduces river-aquifer interactions, thereby
weakening groundwater recovery by 22.2%. Groundwater recovery targets remained
positive (>0) across all scenarios, demonstrating that maintaining regulated ecological
flow thresholds effectively mitigates groundwater level deterioration even under
diminished total discharge conditions. However, groundwater recovery remained
limited across all scenarios. This suggested that while maintaining ecological flow,
which facilitated groundwater recovery, additional effective measures were still

required to achieve rapid groundwater recovery.

3.4 Best and Worst Solution for Each Objective

As demonstrated in previous sections, distinct positive or inverse relationships
existed between different objectives. In the next step, the best and worst solutions for
each objective were then analyzed to assist decision-makers in selecting management
strategies based on different priorities. Figure 8 illustrates the solutions for each
objective across scenarios. The results revealed substantially larger discharge volumes
during peak flood periods (July 30 to August 1) compared to other periods under all
scenario-solution combinations.

The best solution for flood control (the first row graphs in Figure 8) kept the reservoir
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levels below the corresponding FLWL throughout all operational periods (F: in
Equation 3 equals 0). Given the pronounced inverse relationships between flood risk
and reservoir water scarcity objectives, this solution also represented the worst solution

for water storage in Scenarios a and b (Figures 8a4 and 8b4) or closely approximates it

in Scenario ¢ (Figure 8c4), thereby highlighting the direct conflict between minimizing
reservoir flood risk throughout the flood season and ensuring adequate storage at the
end of the flood season. The stringent implementation of FLWL operation strategies
resulted in waste of floodwater resources. The floodwater utilization rate (i.e., utilized
flood volume/total flood volume) stayed below 25% across all scenarios, even dropping
below 5% in Scenario a. This outcome arose because higher outflows led to lower
reservoir levels, preventing full utilization of storage capacity. As a result, floodwater
was primarily released rather than being retained for future use, resulting in low
floodwater utilization efficiency. Consequently, reservoir water levels at the end of the
flood season became critically low, making rapid restoration to normal storage level
operationally challenging.

The best solution for water storage (the third row graphs in Figure 8) improved
floodwater utilization, with resource utilization rates approaching 40% across all
scenarios. This operational strategy raised reservoir levels to normal storage capacity
by the end of the flood season (F2 = 0). However, this solution also represented the
worst solution for flood control (the second row graphs in Figure 8). This
implementation resulted in reservoir level exceedances above FLWL for 62 days
(Scenario a), 51 days (Scenario b), and 26 days (Scenario c), respectively. This trend
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was driven by the increase in FLWL, which expanded the allowable storage space,
thereby reducing the frequency of exceedances under the same storage strategy.

The best solution for groundwater recovery (the fifth row graphs in Figure 8) within
the optimization framework showed operational patterns similar to the best solution for
flood control (the first row graphs in Figure 8), with reservoir levels remaining below
the FLWL. While this strategy maximized the groundwater recovery objective relative
to other feasible operations, its absolute efficacy remained limited, since a considerable
portion of floodwater releases could not be effectively converted into subsurface
storage. This limitation arose because the duration of flood peaks was short, and the
limited short-term infiltration restricted substantial groundwater recharge during the
flood season. This also highlights the limitation of relying solely on reservoir release
regulation for groundwater recovery.

The worst solution for groundwater recovery (the sixth row graphs in Figure 8) was
characterized by minimal reservoir discharge, which substantially reduced groundwater
recharge and produced the lowest recovery effects. Because of the reduced outflow, the
reservoir retained higher water levels by the end of the flood season, generally
remaining close to the normal storage level.

While the best and worst solutions for each objective cannot achieve optimization of
all objectives simultaneously, a moderate elevation of FLWL facilitated simultaneous
reduction of both flood and water scarcity risks. However, as indicated by the limited
groundwater recovery across scenarios, additional measures such as managed aquifer

recharge (MAR) are necessary to enhance groundwater recovery. Accordingly, the
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following section evaluates groundwater numerical simulations and quantifies the

impacts of MAR under varying recharge rates.
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Figure 8. Best and worst solution for each objective under Scenarios a, b, and c.
The first and second row graphs show the best and worst solutions for flood
control, the third and fourth row graphs for water storage, and the fifth and sixth
row graphs for groundwater recovery. The best solution for flood control
maintains reservoir levels below corresponding FLWL throughout all operational
periods, while the best solution for water storage achieves normal storage level by
the end of flood season.
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3.5 Effectiveness of Groundwater Numerical Simulation

To further investigate the effective floodwater utilization strategies, the proposed
MAR scheme was tested, whereby accurate simulation of groundwater dynamics
served as the essential basis for evaluating the feasibility of this strategy. To evaluate
MAR feasibility, the MODFLOW model was employed to simulate groundwater
dynamics. A comparative analysis of simulated and observed groundwater levels at six
monitoring wells (i.e., Zhongzhang, Xiyin, Tunli, Beicun, Maoshanying, and Longyao)
is presented in Figure 9.

Overall, the simulated results demonstrated strong agreement with observed trends,
indicating that the model effectively captured groundwater level dynamics. Most
monitoring wells exhibited satisfactory calibration performance, with R? ranging from
0.82 to 0.96 and MSE between 0.0006 and 0.016 m, confirming the robustness of the
simulation accuracy. These results validated the applicability of MODFLOW for
providing reliable support for the quantitative assessment of managed aquifer recharge

effectiveness.
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Figure 9. Comparison of measured and simulated groundwater levels at different
monitoring wells. (a) Zhongzhang, (b) Beicun, (¢) Xiyin, (d) Tunli, (e)
Maoshanying, and (f) Longyao, with the black solid line representing the
measured level, the blue solid line the simulated level, and the red dashed line the
long-term linear trend. Different background colors distinguish various trend
stages during the simulation period.

During the simulation period, the groundwater levels of six monitoring wells
exhibited distinct stage trends. For most wells (excluding Zhongzhang and Beicun in
Figures 9a-b), the levels exhibited a decline in groundwater levels before recovering.
In contrast, the measured and simulated groundwater level at Zhongzhang well
exhibited a declining trend, followed by a slow increase, and a followed decline. The
level at Beicun (Figure 9b) also exhibited a trend of decline, whereby the second phase

was characterized by stabilization, and a followed increase in groundwater levels. The

initial decline in groundwater levels across nearly all wells can be associated with high
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groundwater extraction used for spring irrigation, while the subsequent increases were
driven by substantial precipitation during the flood season. These deviations can be
attributed to localized groundwater extraction, which induced additional fluctuations in

the groundwater levels at these two wells.

3.6 Investigation on Efficient Utilization of Flood Resources

Leveraging the validated MODFLOW model, we quantified the spatial and
quantitative effects of MAR using floodwater resources under varying recharge rates,
as illustrated in Figure 10. Due to varying hydrogeological conditions in the area, the
groundwater recovery levels exhibited spatial heterogeneity. As can be seen,
groundwater recovery primarily occurred around the Zhi River, with more pronounced
recovery observed in the western regions compared to the eastern regions. This
difference might arise from the smaller specific yield in the west, where limited aquifer
storage capacity causes the same recharge volume to produce a high rise in groundwater
levels. By assuming recharge intensities from the 20 recharge wells ranging from 50 to
300 m® d°!, the proportion of the effective groundwater recovery area also varied and
increased from 9.3 to 17.6%. Simultaneously, the average recovery in the effective
recovery areas increased from 0.01 m to 0.09 m. The maximum groundwater recovery
exhibited a distinct three-phase nonlinear pattern in response to varying recharge rates.
In phase I, with recharge rates of 50 - 100 m? d”!, the maximum recovery level surged
from 0.06 m to 0.36 m, as the aquifer’s recharge potential was high at this stage. In
phase II, with recharge rates of 100-200 m* d-!, it stabilized at 0.36 m, suggesting a

diminishing response as additional recharge no longer produced proportional increases
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in groundwater levels. In phase III, with the highest recharge rates of 200-300 m* d!,
the recovery gradually increased from 0.36 m to 0.46 m, since enhanced recharge
expanded the groundwater recovery zone, leading to a further rise in water levels but
with a smaller magnitude than that in phase I. As shown in Figure 10g, the recovery
rate significantly improved between recharge rates of 50 and 100 m® d! (p < 0.05),
indicating a marked response within this recharge rates range. This pattern demonstrates
that increasing recharge intensity enhances groundwater recovery levels, but the effect

might be weakened as the aquifer approaches its limits.
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Figure 10. Spatial distribution of groundwater recovery under varying recharge
rates in the 20 wells. (a) 50, (b) 100, (c) 150, (d) 200, (e) 250, and (f) 300 m* d"'. Blue
lines represent river, and black dots denote recharge wells. The inset pie chart
illustrated the proportion of areas with different recovery levels: blue indicated
unrecovered areas (recovery = 0 m), green showed inefficient recovery areas (0 <
recovery < 0.01 m), and red denoted effective recovery areas (recovery > 0.01 m).
(g) the distributions of recovery values (> 0 m) across different recharge rates,
presented as boxplots and scatter points, where mean values are denoted by
diamonds.

This pattern is consistent with the findings of Samanta et al. (2020) on recharge

volume-dependent infiltration rate thresholds. Therefore, the effective implementation
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of MAR should consider the spatial heterogeneity of aquifer permeability, optimize

recharge rates, and consider land use constraints (Owuor et al., 2016) to avoid

inefficient percolation zones, while balancing recovery efficacy with engineering costs.

4. Discussion

While the aforementioned results demonstrate the effectiveness of the proposed
floodwater utilization framework, including the performance evaluation of the
groundwater numerical model, and the quantification of MAR effects using floodwater
resources, several key aspects merit further examination to contextualize these findings
and inform future applications. Accordingly, this discussion first examines the
sensitivity of optimization outcomes to variations in the encoder-decoder LSTM input
sequence length, MAR recharge rates and decision variable, before addressing the

limitations and potential risks.

4.1 Impact of Input Sequence Length of the Groundwater Level Prediction

Model on Optimization Results

The developed deep learning and multi-objective optimization framework effectively
quantified competing objectives. However, as one of the key hyperparameters, which
are user-defined settings that govern model architecture and training, the input sequence
length m has a significant impact on the predictive performance of LSTM models

(Gauch et al., 2021; Hosseini et al., 2024). While the configuration with m = 6 days was

selected as suitable based on comprehensive training and testing performance metrics,

the model with m = 9 days showed comparable robustness (Figure 6). To examine the
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impact of this hyperparameter on optimization results, the 9-day model was integrated
into the multi-objective framework, generating alternative Pareto front solutions
(Figure 11).

The results indicated that adjustments to m affect the objective function values across
all objectives. Flood risks and water scarcity showed no significant differences (p >
0.05) between the two configurations analyzed. Groundwater recovery objectives
exhibited significant differences (p < 0.05) but maintained consistently positive
objective function values. This demonstrated that the continuous maintenance of river
flow was critical for effective groundwater recovery.

Notably, changes of input sequence length (from 6 to 9 days) did not alter inter-
objective inverse or positive effects. Flood risk maintained inverse relationships with
reservoir water scarcity and groundwater recovery, while water scarcity and
groundwater recovery retained a positive relationship. Similarly, this change of m also
did not affect the response of objectives across the different scenarios. When FLWL
was elevated, flood risks and reservoir water scarcity losses significantly decreased (p
< 0.05) when moving from m = 6 to 9 days configuration. At the same time, the inverse
or positive relationships between objectives became weakened (the absolute value of p
decreased). This indicated that increasing FLWL could reduce competition between
multi-objectives optimization and promote system balance. Changes in m did not alter
the relationships between objectives. However, its limitations still persist, as variations
in sequence length may impact model performance under different hydrological
conditions or when applied to new scenarios.
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Figure 11. Two-dimensional matrix diagram of Pareto front competition when
input sequence length was set to 9 days under (a) Scenario a, (b) Scenario b, and
(¢) Scenario c, illustrating the relationships among the three optimization
objectives: flood risk, water scarcity, and groundwater recovery. The blue scatters
show relationships between objectives, the red ellipses indicate the overall trend
of the scatter points, the green box show the distribution of each objective within
its respective scenario., and p reflects the strength of positive or inverse
relationships. (d) compares the distributions of the three objectives across the
three FLWL scenarios, revealing the sensitivity of the optimization outcomes to
different reservoir water-level constraints.

4.2 Impact of Managed Aquifer Recharge on Optimization Results

Based on the quantified benefits of MAR on groundwater recovery as demonstrated
in previous sections, this section explores its broader implications for the multi-
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objective optimization framework, particularly during the implementation of MAR,
how the minimum discharge within the multi-objective optimization framework satisfy
both ecological and recharge flow requirements. Consequently, Equation 6 was
accordingly modified as follows:

Q20" +0up (11)
where Omur represents the flow required for different recharge rates [L3T '], while other
variables remain consistent with Equation 6. This modification ensures that the
minimum release constraint not only maintains downstream ecological flow but also
guarantees sufficient water availability for MAR implementation.

Following this adjustment, the relationship between flood risk and water scarcity was
examined, with results presented in Figure 12. Despite the adjustment in constraints,
the inverse relationships between flood risk and water scarcity persisted. In the multi-
objective optimization process, MAR was represented as an increased minimum
discharge constraint (Equation 11). Under this constraint, the simulations showed that
MAR led to lower average flood risk but higher average reservoir water scarcity. This
outcome is evident in all the inset box plots of Figure 12, where applying MAR shifts
the mean values (cross symbols) downward for flood risk (brown columns, left without
MAR to right with MAR) and upward for water scarcity (orange columns). This change
might result from the increase in the minimum discharge constraint under MAR, which
needs more water to be released downstream, thereby reducing flood risk while
simultaneously increasing reservoir water scarcity losses at the end of the flood season.
Statistical tests, as indicated by the p-values shown in each inset box plot, further
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confirmed that these differences were significant (p < 0.05) only at the highest recharge
rate of 300 m?® d' (Figure 12f), while no significant differences (p > 0.05) were
observed at lower recharge rates (Figures 12a—e). This is because at lower recharge
rates, the changes in the minimum discharge constraint were relatively small, resulting

in limited impacts on the optimization outcomes.
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Figure 12. The relationship between flood risk and water scarcity under different
managed aquifer recharge (MAR) rates. (a)-(f) show the results under recharge
rates of 50, 100, 150, 200, 250, and 300 m* d*, respectively. Inset box plots compare
flood risk (brown column) and water scarcity (orange column) without (left bar)
and with (right bar) recharge measures. Cross (X) represents average value.
Statistical tests p-values are also indicated in the inset box.

Figure 12. The relationship between flood risk and water scarcity under different
managed aquifer recharge (MAR) rates. (a)-(f) show the results under recharge rates of
50, 100, 150, 200, 250, and 300 m* d ', respectively. Inset box plots compare flood risk
(brown column) and water scarcity (orange column) without (left bar) and with (right

bar) recharge measures. Cross (X) represents average value. Statistical tests p-values
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are also indicated in the inset box. Similar findings have been reported in previous
studies. Schiffer et al. (2022) emphasized that maximum discharge constraints
significantly affect the marginal water values (i.e., the opportunity cost of storing water
for future power generation) as well as the operational strategies of hydropower systems.
Helseth et al. (2022) demonstrated that environmental constraints could complicate
scheduling problems by introducing state dependencies and non-convexities.
Increasing downstream water demand could improve flood utilization efficiency as
shown by Wang et al. (2022). These studies highlighted that variations in constraints
influence optimization outcomes. Thus, defining and incorporating constraints, such as
those introduced by MAR in this study, is crucial for achieving robust and balanced
reservoir optimization outcomes, ensuring that floodwater utilization aligns with

multiple objectives including ecological sustainability and groundwater recovery.

4.3 Impact of Decision Variable on Optimization Results

To assess the robustness of the optimization scheme, we evaluated the sensitivity of
the results to the choice of decision variable. In Section 2.3.3, we initially used the
outflow-to-inflow ratio as the decision variable (Decision Variable 1). As Yang et al.
(2017) demonstrated, the efficacy of decision variables can differ significantly across
scenarios, especially under uncertain or extreme events, potentially leading to
suboptimal outcomes. Therefore, we introduced an alternative decision variable, i.e.,
the outflow relative to the previous day’s reservoir storage (Decision Variable 2).
Subsequently, we applied this new decision variable to multi-objective optimization

simulations under three FLWL scenarios, which were described in Section 2.3.1. The
46



849  comparative results are presented in Table 2.

850 All objective values exhibited significant differences (p < 0.05) between the two
851  decision variables across the three FLWL scenarios. Notably, minimum flood risk and
852  reservoir water scarcity no longer reached zero in any scenario under Decision Variable
853 2. Despite these quantitative differences, the variation trends of the objectives across
854  scenarios remained consistent with those obtained under Decision Variable 1.
855  Specifically, as the FLWL increased (from Scenario a to c¢), the mean values of all
856  objectives decreased. Moreover, the inverse and positive relationships among flood risk,
857  reservoir water scarcity, and groundwater recovery (see Supporting Information Figure
858  S4) followed the same patterns described in Section 3.3. This indicates that while the
859  choice of decision variable can significantly influence the absolute value of the
860  objective functions, it does not alter the intrinsic interactions among the objectives.
861  Table 2. Comparison of optimization objectives under different decision

862  variables. Decision Variable 1 and 2 are the outflow-to-inflow ratio and the
863  outflow relative to the previous day’s reservoir storage, respectively.

Decision Variable 1 Decision Variable 2

Objectives Scenarios P
Average Range Average Range
a 17.33 [0, 45.65] 12.63 [4.60,25.56] <0.05
Flood Risk b 5.53 [0,13.29] 8.56 [4.56,15.33] <0.05
c 4.54 [0,12.73]  7.85 [4.61,13.07] <0.05
a 0.23 [0, 0.49] 0.36 [0.21, 0.51] <0.05
Water
. b 0.11 [0, 0.23] 0.28 [0.11, 0.54] <0.05
Scarcity
c 0.09 [0, 0.22] 0.23 [0.14, 0.36] <0.05
Groundwater a 6.92 [5.61,8.42] 9.61 [7.67,12.16]  <0.05
Recovery b 6.57 [5.56,7.26] 7.55 [3.75,10.29] <0.05
(107%) c 4.42 [1.06,7.17] 4.42 [2.55,5.81]  <0.05

864 4.4 Advantages, Limitations and Potential Risks

865 The developed deep learning and multi-objective optimization scheme, leveraging
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an encoder-decoder LSTM architecture, offers advantages in groundwater level
prediction and optimization. Deep learning models excel at capturing complex non-
linear dependencies from historical data. This is especially advantageous when
complete data on source-sink terms are difficult to obtain, as the utilized encoder-
decoder LSTM can capture the underlying relationships in the system through data-

driven learning (Solgi et al., 2021). Moreover, deep learning models are

computationally efficient, enabling them to process large datasets efficiently and
integrate seamlessly into optimization schemes. This makes them valuable for large-
scale optimization tasks, whereas traditional physics-based models might be more

computationally intensive (He et al., 2022; Tripathy and Mishra, 2024).

Although this study advances a robust framework for multi-objective optimization
of flood control, water storage, and groundwater recovery by integrating deep learning
and 3D groundwater numerical modeling, several limitations constrain its scope and
applicability, highlighting avenues for future work. First, a key limitation of using the
deep learning model is its limited adaptability to replacing traditional physical models
across diverse scenarios. Unlike process-based models governed by physical laws, the
deep learning models rely solely on statistical patterns. Consequently, it may struggle
to generalize to new, unseen conditions, especially in extreme hydrological events

caused by climate change (Acufia et al., 2025). Model performance may degrade when

applying to extreme conditions, highlighting the need for caution in using the deep
learning model as a substitute for traditional physical models.

Second, the framework’s exclusive focus on flood-season operations overlooks
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critical non-flood season dynamics, particularly the regulation of groundwater
extraction, which exacerbates depletion in vulnerable depression cone regions. Under
climate change, integrating cross-seasonal strategies, such as augmenting flood-season
recharge, while curtailing non-flood extraction through adaptive pumping controls

(Balerna et al., 2024; Tang et al., 2024), could yield more sustainable outcomes by

balancing annual water budgets and mitigating long-term groundwater stress.

Finally, while MAR emerges as a promising tool for floodwater utilization, it
introduces potential environmental risks, including water quality degradation and
clogging, which could undermine ecological health if not rigorously managed (Fiori et

al., 2025; Guo et al., 2023). To mitigate these issues, infiltration and pulsed injection

can be applied (Page et al., 2014; Rodriguez et al., 2018), although these measures

increase operational costs and limit economic feasibility. This necessitates expanded
analyses, explicitly weighing recharge efficiency against water quality through coupled
hydrogeochemical modeling.

Despite these limitations and potential risks, the proposed framework’s broader

applicability remains promising, as FU under diverse conditions (Ding et al., 2023; Liu

et al., 2015) and groundwater recharge practices (Alam et al., 2020; Zhang et al., 2020)

are well-established, supporting the effective integration of flood mitigation and
groundwater recovery. Therefore, future work can evolve this framework into a more
comprehensive, resilient tool for integrated water resource management applicable

beyond the North China Plain, particularly under intensifying climate stress.
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5. Conclusions

This study advances integrated water resource management by developing a novel
coupled framework that merges deep learning (encoder-decoder LSTM) with multi-
objective optimization (NSGA-II) and groundwater numerical modeling (MODFLOW)
to optimize floodwater utilization in the Lincheng Reservoir system, North China Plain.
The framework targets three key objectives: minimizing flood risk (defined as the
cumulative exceedance of reservoir water levels above the flood limited water level
(FLWL) during the flood season), reducing reservoir water scarcity (measured as the
deviation from normal storage levels at the end of the flood season for reservoir), and
maximizing groundwater recovery (quantified as the increase in groundwater levels at
the end of the flood season resulting from varied reservoir discharge flows during the
flood season). By dynamically adjusting reservoir operations across scenarios while
ensuring ecological flows and downstream flood safety, the framework demonstrates a
pathway for converting flood hazards into resources for groundwater recovery in
vulnerable groundwater depression cone areas. The key conclusions are as follows:

1. The encoder-decoder LSTM model exhibited high predictive accuracy for
groundwater levels, with optimal performance at a 6-day input sequence (R?=0.99
and 0.93 respectively for training and testing) and robust results at 9 days (R? =
0.97 and 0.92). This highlights the reliability of the framework in capturing
temporal hydrological dependencies.

2. Across all scenarios, flood risk exhibited inverse relationships with both water

scarcity and groundwater recovery. Higher flood risk, driven by retaining more
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water in the reservoir, reduced reservoir water scarcity through increased storage
but limited groundwater recovery by decreasing discharge volumes, thereby
reducing the water available for downstream recharge. Increasing the FLWL
weakened these inverse relationships, achieving significant reductions in reservoir
flood risk and water scarcity (84.9 and 61.9% respectively), with a moderate
decrease (22.2%) in groundwater recovery due to lower discharge volumes.

3. Maintaining ecological flows enabled groundwater recovery even under reduced
total discharges, emphasizing that continuous river connectivity, rather than
volume alone, drives groundwater recharge. This finding challenges conventional
volume-focused strategies, advocating for flow continuity as an effective way for
groundwater recovery.

4. The MODFLOW model, with accurate replication of spatiotemporal
groundwater variations (R? of 0.82-0.96), validated managed aquifer recharge
(MAR) as an effective enhancement for groundwater recovery in depression cones.
At 300 m*® d' operated on 20 recharge wells during the 2023 flood season,
maximum recovery reached 0.46 m, with effective recovery (>0.01 m) in 17.6% of
the area. Incorporating MAR modified discharge constraints, resulting in lower
flood risks and increased water scarcity, illustrating constraint-driven trade-offs
that must be balanced in adaptive management. This quantifies MAR’s efficacy but
highlights spatial heterogeneity and the need for site-specific optimization to
maximize benefits.

5. The proposed framework shows potential for broader application beyond the

51



953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

North China Plain. By transforming flood hazards into recoverable groundwater
resources through integrated reservoir operations and groundwater recovery
measures, the framework offers a promising strategy for regions facing flood and

groundwater depletion risks, advancing climate-resilient water management.
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