
Hamiltonian Dynamics 

Theodore G. Shepherd 

Department of Meteorology, University of Reading, Earley Gate, Whiteknights, Reading RG6 

6BB, U.K. 

and 

Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich 52428, Germany 

theodore.shepherd@reading.ac.uk 

tel. +44 118 378 8957 

This article is an update of a previous edition, volume 3, pp 929–938, © 2003, Elsevier Ltd. 

Synopsis 

Hamiltonian dynamics describes the evolution of conservative physical systems. Originally 

developed as a generalization of Newtonian mechanics, it represents a core component of any 

undergraduate physics curriculum. What is not so widely recognized is that the ideal (i.e. 

conservative) form of the governing equations used in dynamical meteorology are also 

Hamiltonian dynamical systems. This chapter explains how this is so, and some of the 

consequences that follow from this fact. It is important to be able to connect theoretical results 

across the hierarchy of various models used in dynamical meteorology, from the simplest to the 

most complex. Hamiltonian dynamics is what allows one to do precisely that. 
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Key points 

• The governing equations of dynamical meteorology are examples of Hamiltonian 

dynamical systems 

• Hamiltonian dynamical structure provides a unifying framework which connects specific 

theories across a hierarchy of models 

• Wave-activity conservation laws and stability theorems are notable examples 

1. Introduction 

Hamiltonian dynamics describes the evolution of conservative physical systems. Originally 

developed as a generalization of Newtonian mechanics, describing gravitationally driven motion 

from the simple pendulum to celestial mechanics, it also applies to such diverse areas of physics 

as quantum mechanics, quantum field theory, statistical mechanics, electromagnetism, and optics 

— in short, to any physical system for which dissipation is negligible. Dynamical meteorology 

consists of the fundamental laws of physics, including Newton’s second law. For many purposes, 

diabatic and viscous processes can be neglected and the equations are then conservative. (For 

example, in idealized modeling studies, dissipation is often only present for numerical reasons 

and is kept as small as possible.) In such cases dynamical meteorology obeys Hamiltonian 

dynamics. Even when nonconservative processes are not negligible, it often turns out that 

separate analysis of the conservative dynamics, which fully describes the nonlinear interactions, 

is essential for an understanding of the complete system, and the Hamiltonian description can 

play a useful role in this respect. Energy budgets and momentum transfer by waves are but two 

examples. 



Hamiltonian dynamics is often associated with conservation of energy, but it is in fact much 

more than that. Hamiltonian dynamical systems possess a mathematical structure that ensures 

some remarkable properties. Perhaps the most important is the connection between symmetries 

and conservation laws known as Noether’s theorem. Well-known examples are the fact that 

conservation of energy is linked to symmetry in time, and conservation of momentum to 

symmetry in space. Less well-known is the fact that material conservation of potential vorticity, 

so crucial to the theory of dynamical meteorology, is also connected to a symmetry by Noether’s 

theorem, but to a symmetry that is invisible in the Eulerian formulation of the governing 

equations. It turns out that one can exploit the underlying Hamiltonian structure of a system 

through the relevant conservation laws even if the explicit form of that structure is not known, 

which is useful for applications. As is shown in detail below, symmetry-based conservation laws 

provide a general theory of available potential energy, and show why it is that Rossby waves 

carry negative zonal momentum, thereby explaining both the maintenance of the westerlies and 

the stratospheric Brewer–Dobson circulation. Such laws also provide a powerful way of deriving 

stability criteria. 

Dynamical meteorologists use a variety of theoretical models, ranging from the fully 

compressible equations through the hydrostatic primitive, Boussinesq, and quasi-geostrophic 

equations to the barotropic equations. With such a zoo of models, it is crucial to know the extent 

to which theories developed for one model carry over to another. Hamiltonian dynamics provides 

this unifying framework. All the models just mentioned are in fact Hamiltonian, and models can 

be grouped into families according to their Hamiltonian structure. In this way it becomes 

immediately apparent, for example, that the Charney–Stern stability theorem for baroclinic 

quasi-geostrophic flow is the counterpart to Rayleigh’s inflection-point theorem for barotropic 



flow, and that an analogous stability theorem will exist for any balanced model having a similar 

Hamiltonian structure, no matter what the definition is of the potential vorticity. Thus, it is 

precisely through its abstract character that Hamiltonian dynamics has many powerful 

applications in theoretical dynamical meteorology. The main applications discussed here are 

presented in Table 1. 

The exposition in this Chapter is intended to be self-contained, but is necessarily kept 

succinct. In addition to the specific references provided, readers may wish to consult Salmon 

(1988), Shepherd (1990) or Morrison (1998) for general treatments of Hamiltonian fluid 

dynamics. Note that there are different ways to represent Hamiltonian dynamics: Hamilton’s 

principle, Poisson brackets, or the symplectic formulation. In this chapter we follow the 

symplectic formulation as being most readily linked to the traditional governing equations. 

 

Table 1: The main applications in theoretical dynamical meteorology discussed in this 

chapter, grouped according to their pedigree within Hamiltonian dynamics (pseudoenergy or 

pseudomomentum) and their nature (conservation law or stability theorem). 

 Pseudoenergy Pseudomomentum 

Conservation law Available potential energy Eliassen-Palm wave activity 

 

Stability theorem 

Static stability 

Centrifugal stability 

Symmetric stability 

Rayleigh-Kuo 

Charney-Stern 

 

2. Canonical and Noncanonical Dynamics 

In classical mechanics (Landau and Lifshitz, 1976), canonical Hamiltonian dynamical 

systems are those described by Hamilton’s equations (eqns [1]). 
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Here ℋ(q, p) is the Hamiltonian function, q ≡ (q1,…,qN) are the generalized coordinates, and p ≡ 

(p1,…, pN) the generalized momenta. For so-called natural systems with ℋ= (|p|2/2m)+U(q), 

where m is the mass and U the potential energy, eqns [1] immediately lead to eqn [2], which is 

Newton’s second law for a conservative system. 
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Conservation of energy follows directly from eqns [1], for any ℋ, by the chain rule (repeated 

indices are summed). 
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2.1 Symplectic Formulation 

The theory of canonical transformations suggests that there is nothing special about the qs and 

ps, and Hamilton’s equations [1] can be written in the so-called symplectic form, eqn [4]. 
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In eqn [4], u = (q1 ,…, qN, p1 ,…, pN) and 𝐽 is given by eqn [5], where I is the N × N identity 

matrix. 

𝐽	 = 	 1 0 𝐼
−𝐼 03	         [5] 

𝐽 has certain mathematical properties, including skew-symmetry. More generally, one can take 

those properties to be the definition of Hamiltonian structure, with 𝐽 not necessarily of the form 

of eqn [5]. The skew-symmetry of 𝐽 nevertheless guarantees energy conservation (eqn [6]).  
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There is an important distinction between systems with a nonsingular (or invertible) 𝐽, which 

can always be transformed into the canonical form of eqn [5], and those with a singular (or 

noninvertible) 𝐽. The latter, known as noncanonical systems, possess a special class of invariant 

functions known as Casimir invariants (Sudarshan and Mukunda, 1973). These are the solutions 

of eqn [7] (for canonical systems the solutions are just constants). 
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That they are necessarily conserved in time then follows from the skew-symmetry of 𝐽 (eqn [8]). 
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The best-known example of a noncanonical Hamiltonian system is Euler’s equations for rigid-

body dynamics (Arnold, 1989). Having an odd number of evolution equations (three in this 

case), the system is necessarily noncanonical because any skew-symmetric matrix of odd 

dimension must be singular. There is one Casimir invariant for Euler’s equations, the total 

angular momentum. 

2.2 Noether’s Theorem 

For a canonical system, if a particular generalized coordinate qj does not appear in the 

Hamiltonian, then the Hamiltonian is invariant under changes in that coordinate; in other words, 

there is a coordinate symmetry. Translational and rotational symmetries are common examples. 

Hamilton’s equations [1] then immediately imply that the corresponding generalized momentum 

is conserved: dpj/dt = 0. 



This connection between symmetries and conservation laws has a more general and far more 

powerful form. Given a function ℱ(u), define 𝛿ℱ𝑢) ≡ 𝜀	𝐽)*
$ℱ
$(#

, where 𝜀 is an infinitesimal 

parameter; 𝛿ℱ𝒖 is called the infinitesimal variation in u generated by ℱ. (In the canonical case, 

𝛿ℱ𝒖 is an infinitesimal canonical transformation.) It then follows that the infinitesimal variation 

in ℋ generated by ℱ is given by eqn [9]. 
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On the other hand, the time evolution of ℱ is given by eqn [10]. 
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Using the skew-symmetry of 𝐽, eqns [9] and [10] then imply that 𝛿ℱℋ = 0 if and only if !ℱ
!#
= 0. 

This connects symmetries and conservation laws: the Hamiltonian is invariant under the 

variation generated by ℱ (i.e., that variation represents a symmetry of the Hamiltonian) if and 

only if ℱ is a conserved quantity. This result, known as Noether’s theorem, is one of the central 

results of Hamiltonian dynamics (Arnold, 1989) and underpins many of its applications to 

dynamical meteorology. 

Casimir invariants are special because 𝛿𝒞𝒖 = 𝟎. This suggests that they correspond to 

invisible symmetries. For example, in rigid-body dynamics the total angular momentum is a 

conserved quantity in any description of the motion. In the original canonical description it 

corresponds to the rotational symmetry of the dynamics, but in Euler’s equations, where angles 

have been eliminated, it enters as a Casimir because the underlying physical symmetry is no 

longer explicit. 

3. Barotropic Dynamics 



In what sense are the models of dynamical meteorology Hamiltonian? Consider what is 

probably the simplest such model, the barotropic vorticity equation (eqn [11]), which describes 

two-dimensional, nondivergent flow. 
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Here 𝜔(𝑥, 𝑦, 𝑡) = 𝒛H ⋅ (𝛁 × 𝒗) = ∇.𝜓 is the vorticity, 𝒛H	is the unit vector in the vertical direction, 

𝒗(𝑥, 𝑦, 𝑡) = 𝒛H × 𝛁𝜓	is the horizontal velocity, 𝜓(x,y,t) is the streamfunction, and ∂(f,g) ≡ fxgy − 

fygx is the two-dimensional Jacobian. The candidate Hamiltonian is the conserved energy of this 

system, which is just the kinetic energy. The obvious dynamical variable is the vorticity. In order 

to cast eqn [11] in the form of eqn [4], we need to regard every point (x,y) in space as indexing a 

degree of freedom analogous to the index i; the sum over i then becomes an integral over space, 

functions become functionals, and partial derivatives become functional or variational 

derivatives. Thus we write eqn [12]. 
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Assuming for now that the boundary terms vanish, we identify the variational derivative as 

δℋ/δ𝜔 = 	−	𝜓. The need to integrate by parts reflects the fact that the effect of a vorticity 

perturbation on the kinetic energy density is nonlocal; thus, partial derivatives at fixed points in 

space make no sense and variational derivatives are essential. Equation [11] can now be cast in 

Hamiltonian form as eqn [13]. 
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Note that 𝐽 is now a differential operator rather than a matrix. It is evidently skew-symmetric 

since ∫∫ f	𝐽g dx dy = − ∫∫ g	𝐽f dx dy (under suitable boundary conditions) for arbitrary functions f, 

g. 



3.1 Conservation Laws 

The form of 𝐽 in eqn [13] is clearly singular: any function of 𝜔 inserted in the argument gives 

zero. These then represent Casimir invariants of the system: functionals of the form [14], where 

𝐶(·) is an arbitrary differentiable function, evidently satisfy 𝐽(𝛿𝒞/𝛿𝜔) = 0.  

𝒞 = ∬𝐶(𝜔)  𝑑𝑥𝑑𝑦				with					 1𝒞
1-
= 𝐶′(𝜔)	    [14] 

The fact that such functionals are conserved in time corresponds to the material conservation of 

vorticity expressed by eqn [11]. 

To identify the momentum invariants, we need to apply Noether’s theorem to the various 

spatial symmetries. Suppose that the domain is unbounded, with decay conditions at infinity, so 

that there is symmetry in all directions. The variation in ω corresponding to a translation by δx in 

the coordinate x is given by δω = −(∂ω/∂x) δx. Setting ɛ = δx, we then need to solve for the 

momentum invariant ℳ according to eqn [15]. 
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To within the addition of a Casimir, the solution of eqn [15] is given by δℳ/δω = y. Hence we 

may choose ℳ as in eqn [16], where 𝒗 = (u,v).  
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The first, elementary form of ℳ given by eqn [16] is known as Kelvin’s impulse (Benjamin, 

1984). It represents the y ‘center-of-mass’ of the vorticity distribution, and is in many ways the 

preferable form because it is local in 𝜔. The final form, however, shows that the invariant ℳ 

corresponding to symmetry in x is ultimately just the x-momentum, as expected. The same 

argument applied to translation in the coordinate y yields eqn [17]. 

ℳ = −∬𝑥𝜔  𝑑𝑥𝑑𝑦	 = ∬𝑣  𝑑𝑥𝑑𝑦	   [17] 



Finally, rotational symmetry leads to eqn [18], where r ≡ (x,y) and r = | r |, which is the angular 

momentum about the origin. 
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The discussion has so far neglected any contribution from boundary terms. They are easily 

included. In the presence of rigid lateral boundaries, for a complete mathematical specification of 

the problem, eqn [11] must be supplemented with the conditions [19] on each connected portion 

of the boundary.  
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Here 𝒏a is the outward-pointing normal, and s is the vector arc length along the boundary. The 

second of eqns [19] represents conservation of circulation, which follows from the underlying 

momentum equations but must be included as a separate condition in the vorticity formulation of 

the dynamics. Although the circulation integrals along each connected portion of the boundary 

are constants in time, they are independent dynamical variables and are needed to determine 𝒗 

from ω. The Hamiltonian formulation of eqn [13] may easily be extended to include the 

circulation integrals in addition to ω as dynamical variables. The Casimir invariants then include 

functions of these circulation integrals. With regard to the momentum invariants, of course, the 

rigid boundaries must respect the same symmetries; a zonal channel flow with walls at constant y 

breaks the translational symmetry in y and the rotational symmetry, leaving only the zonal 

impulse of eqn [16] as an invariant. The final equality of eqn [16] is then no longer strictly true, 

but the impulse and momentum differ only by terms involving the circulations along the channel 

walls, which are Casimirs. Since symmetry-based invariants are only defined to within the 

addition of a Casimir in any case, the impulse and momentum are essentially equivalent. 



A simplified model of barotropic dynamics is the point-vortex model, where the vorticity is 

concentrated in Dirac delta functions. The point-vortex model has been used to study two-

dimensional turbulence and certain kinds of atmospheric flow structures. It also turns out to be 

Hamiltonian, and is in fact a canonical system: the Casimirs are built into the model as 

parameters through the choice of the point-vortex strengths. 

4. Other Balanced Models 

The barotropic vorticity equation has a mathematical structure that is analogous to that of 

many models of balanced, or potential-vorticity-driven, flow and the results derived above 

extend in an obvious way to such systems. Inclusion of the beta effect means simply a change 

from ω to the potential vorticity q = ω + βy. Since δy = 0 (recalling that the coordinate y is like 

an index), δq = δω and eqns [11], [12], [13] and [14] go through unchanged with q in place of ω. 

However the beta effect breaks translational symmetry in y and rotational symmetry, leaving 

only the translational symmetry in x represented by the zonal impulse invariant of eqn [16]. 

Strictly speaking the latter should be written with q in place of ω, but the integrals differ by a 

constant and so represent the same invariant. Inclusion of topography is no more difficult; one 

simply includes an additional topographic term h(x, y) in the definition of q. This will generally 

break all spatial symmetries, leaving only the energy ℋ and Casimirs 𝒞 as invariants. This 

illustrates a general and important point, namely, that symmetry-based invariants are fragile: a 

slight change in the conditions of the problem destroys their conservation properties. In contrast, 

the energy and the Casimirs are robust invariants (robust within the conservative context, of 

course) that survive such perturbations. 

Stratification is most easily introduced in the context of the quasi-geostrophic (QG) model. 

Layered QG models are completely trivial extensions of the barotropic system: their evolution is 



determined by the potential vorticity qi(x, y, t) in each layer i, governed by eqn [11] with qi in 

place of ω, together with conservation of circulation along any rigid lateral boundaries that may 

be present. These are then the dynamical variables. The energy now includes available potential 

as well as kinetic energy, but, apart from some geometric factors representing the layer depths, 

one still recovers 𝛿ℋ/𝛿𝑞) =	−	𝜓) in each layer as well as eqn [13] with qi in place of ω. The 

various invariants follow in the obvious way with the spatial integrals summed over the different 

layers. The same considerations, incidentally, apply to layered non-QG ‘intermediate’ models 

that still have the form of eqn [11] – namely, nondivergent horizontal advection of the potential 

vorticity qi within each layer, with the flow in each layer driven by the potential vorticity in all 

layers (as described by the particular definition of qi). 

With continuous stratification and with upper and lower boundaries (at z = 1 and z = 0, say), 

there is an additional effect. It is well known that the temperature distribution along the upper 

and lower boundaries is equivalent to potential vorticity, and independent evolution equations for 

these temperature distributions are required to fully specify the continuously stratified QG 

system, in addition to the equation for the interior potential vorticity (the latter being eqn [11], 

with q in place of ω, applied at every value of z; thus, the advection of q remains purely 

horizontal). The Eady model is an extreme case where the interior potential vorticity is uniform 

and the flow is driven entirely by the temperature distributions on the upper and lower 

boundaries; the dynamical structures driven from each boundary are known as Eady edge waves. 

Since these temperature distributions also evolve according to eqn [11], with the QG temperature 

𝜓7  in place of ω, it is not surprising that the same kind of Hamiltonian structure also applies to 

this model (McIntyre and Shepherd, 1987). The energy is given by eqn [20]. 
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In eqn [20], the reference-state density ρs(z) and stratification function S(z) = N2/f2 are both 

prescribed, with N(z) the buoyancy frequency and f the Coriolis parameter, and where ∇ is still 

just the horizontal gradient operator. With the potential vorticity given by eqn [21], where f and β 

are constants, eqn [22] follows.  
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This is like eqn [12], but with an additional term involving the temperature variations δψz at the 

upper and lower boundaries. Including these as independent dynamical variables, in addition to q 

(and possibly also circulation terms), the governing equations can be cast in the symplectic form 

of eqn [13]. The Casimirs now involve integrals of arbitrary functions of the temperature on the 

upper and lower boundaries, in addition to integrals of arbitrary functions of potential vorticity in 

the interior (eqn [23]).  
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The momentum invariants similarly extend in obvious ways: for example, the zonal impulse 

invariant is given by eqn [24].  
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The semi-geostrophic (SG) model is widely used in mesoscale dynamics because of its ability 

to represent realistic frontal structures. It turns out that the SG model can also be cast in the form 

of eqn [11], and hence in the symplectic form of eqn [13], provided the equations are written in 

isentropic–geostrophic coordinates. However, in these coordinates rigid boundaries appear to 

move in time (Kushner and Shepherd, 1995a,b). The SG equations, in contrast to the QG 

equations, make no geometrical distinction between horizontal and vertical boundaries – this is 



why they are also useful for the study of coastal dynamics in physical oceanography – and the 

same kind of independent dynamical degrees of freedom encountered in the QG system on upper 

and lower boundaries also appear on lateral boundaries. In the special case of channel walls, 

these degrees of freedom correspond to coastal Kelvin waves and are analogous in some respects 

to the Eady edge waves represented by both the QG and SG systems. They must be taken into 

account in the variational calculations, and enter into many of the resulting expressions. 

5. Unbalanced Models 

Balanced models are controlled by the advection of potential vorticity (perhaps augmented by 

the advection of isentropic surfaces on rigid boundaries), so for such models it is natural to seek 

a Hamiltonian description analogous to eqn [13]. However, models that include a representation 

of gravity waves or other high-frequency oscillations, called unbalanced models, do not fit 

within this framework. They necessarily have additional degrees of freedom. For such models, a 

description in terms of the velocity field is a more natural way to reflect the Hamiltonian 

structure. For example, the rotating shallow-water equations [25] with 𝒗 (x, y, t) = (u, v) the 

horizontal velocity, h(x, y, t) the fluid depth, g the gravitational acceleration, and with constant f, 

conserve energy (eqn [26]).  
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The dynamical variables are 𝒗 and h, for which eqns [27] hold. 
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Note that no integration by parts is necessary in this case; this is characteristic of velocity-based 

representations of the dynamics. It can easily be verified that eqns [25] may be cast in the 



symplectic form ∂u/∂t = 𝐽(𝛿ℋ/𝛿𝒖) with u = (u, v, h) and 𝐽 given by eqn [28], where 𝑞 =

(𝑓 + 𝒛H ⋅ ∇ × 𝒗)/ℎ is the potential vorticity of the shallow-water system.  

𝐽	 = q
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The matrix (28) is evidently skew-symmetric; the signs on the derivative terms are indeed 

correct, since first-order differential operators are themselves skew-symmetric, as with the 𝐽 in 

eqn [13]. The zonal (absolute) momentum invariant is given as expected by eqn [29], for which it 

is easy to verify that 𝐽(𝛿ℳ/𝛿𝒖) = −∂𝒖/∂x in line with Noether’s theorem, and the other 

momentum invariants follow similarly.  
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The Casimirs are given by eqn [30] for arbitrary functions 𝐶(·).  
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Thus, potential vorticity still plays a crucial role in the Hamiltonian description of the dynamics. 

Special cases of Casimirs are total mass (𝐶 = 1) and total circulation (𝐶 = q). 

Stratification is easily incorporated. The hydrostatic primitive equations can be cast in 

Hamiltonian form isomorphic to that of eqn [28] when expressed in isentropic coordinates. Even 

the fully compressible stratified Euler equations, which form the most general system imaginable 

for (dry) dynamical meteorology, can be cast in an analogous form, although there are now 

additional dynamical variables associated with compressibility. The Casimirs are in this case 

given by eqn [31], where 𝜌(x, y, z, t) is the density, 𝜃(x, y, z, t) is the potential temperature, and 

𝑞 = [(𝑓𝒛H + 𝛁 × 𝒗) ∙ ∇𝜃]/𝜌 is the Ertel potential vorticity, with 𝒗 and ∇ now acting in all three 

spatial dimensions. 

𝒞 =∭𝜌𝐶(𝑞, 𝜃)  𝑑𝑥𝑑𝑦𝑑𝑧	       [31] 



The invariance of the Casimirs is of course evident directly from the dynamical equations (eqn 

[32]) and reflects the material invariance of q and 𝜃.  

	 $"
$#
+ 𝒗 ∙ 𝛁𝑞 = 0,											 $A

$#
+ 𝒗 ∙ 𝛁𝜃 = 0,									 $8

$#
+ 𝛁 ∙ (𝜌𝒗) = 0    [32] 

The fully compressible stratified Euler equations are, in fact, a straightforward expression of 

Newton’s second law, without constraints such as hydrostatic balance, provided they are 

expressed in Lagrangian coordinates (Morrison, 1998). In Lagrangian coordinates, the dynamical 

variables are the positions and momenta of fluid elements, which are natural canonical variables. 

The thermodynamic fields can be expressed in terms of these variables: ρ can be written in terms 

of the Jacobian of particle positions (which describes the compression of the fluid), while θ can 

just be chosen as one of the Lagrangian coordinates. In this way, the fully compressible stratified 

Euler equations represent a canonical Hamiltonian system. But there are six dynamical variables 

in the Lagrangian description, compared with only five in the Eulerian description; in 

transforming to Eulerian coordinates, a reduction of the phase space takes place. This is where 

the potential vorticity comes in. In Lagrangian coordinates, the potential vorticity is still 

materially conserved; but what symmetry does it correspond to? The answer is a particle-

relabeling symmetry: if one rearranges fluid elements while preserving the same Eulerian fields, 

then the dynamics is unchanged. There is just enough freedom to do this, because there is one 

more Lagrangian than Eulerian variable. Upon reduction to the Eulerian description, this 

additional degree of freedom disappears, and the particle-relabeling symmetry becomes invisible. 

That is why potential vorticity conservation then appears in the form of a Casimir invariant. 

6. Disturbance Invariants 

Probably the most powerful application of Hamiltonian dynamics to dynamical meteorology 

arises in the context of studying the properties of disturbances to basic states. In fluid dynamics, 



the question of how to define the energy of a wave has often been a point of confusion if not 

contention. For example, in the case of a basic flow, if the wave energy is defined as the energy 

in the frame of reference moving with the basic flow, then it is positive definite but not 

conserved. On the other hand, if it is defined as the difference energy relative to the basic-flow 

energy, then it is conserved but not positive definite. One would like both properties in order to 

define normal modes, spectra, etc. Another problem, at first sight unrelated, arises with 

momentum. The momentum of a wave would appear to be zero (the average of a sinusoid is 

zero), yet waves can certainly transfer momentum; this is what drives the quasi-biennial 

oscillation in the tropical stratosphere, for example. How is one to describe this wave 

momentum? 

In canonical Hamiltonian mechanics, the disturbance energy about an equilibrium is always 

quadratic; from this one assesses stability and defines normal modes. There is no ambiguity. So 

why are things not equally clear for fluid dynamics? The answer lies in the noncanonical 

Hamiltonian structure of virtually every fluid dynamical system in the Eulerian representation. If 

u = U is a steady solution of a Hamiltonian system, then eqn [33] holds. 

𝐽 1ℋ
1𝒖
|𝒖	;	𝑼 = 0          [33] 

 

For a canonical system, the invertibility of 𝐽 then implies that δℋ/δu = 0 at u = U. This means 

that U is a conditional extremum of ℋ, and ℋ[u] − ℋ[U] is quadratic in the disturbance. 

However, for a noncanonical system none of this follows and the disturbance energy is generally 

linear in the disturbance. 

6.1 Pseudoenergy 



Hamiltonian structure provides the solution to this quandary. Equation [33] is locally the same 

as the equation defining the Casimirs, which means that δℋ/δu is locally parallel to δ𝒞/δu for 

some 𝒞 (a different 𝒞 for each choice of U). In other words, there exists a Casimir 𝒞 such that 

eqn [34] holds. 

1ℋ
1𝒖
|𝒖	;	𝑼 = − 1𝒞

1𝒖
|𝒖	;	𝑼        [34] 

Now, both ℋ and 𝒞 are invariants, and the combined invariant ℋ + 𝒞 satisfies the extremal 

condition δ(ℋ + 𝒞) = 0 at u = U. We have thus constructed what we wanted, namely a 

disturbance quantity that is conserved and is locally quadratic in the disturbance (eqn [35]). 

𝒜 = (ℋ + 𝒞)[u] − (ℋ + 𝒞)[U]       [35] 

This quantity is known as the pseudoenergy. Provided one has a complete set of Casimirs, eqn 

[34] can always be solved for a Hamiltonian system and the pseudoenergy can always be 

constructed according to eqn [35]. This is one of the great attractions of Hamiltonian dynamics: 

it provides systematic recipes in abstract terms, which can be worked out for any particular 

application. 

A particularly illuminating application is the subject of available potential energy, highly 

useful in energy budget analyses (Shepherd, 1993). We demonstrate the method in the case of 

the three-dimensional stratified Boussinesq equations. The energy is given by eqn [36].  

ℋ =∭	{8$
.
|𝒗|. + 𝜌𝑔𝑧}	 𝑑𝑥𝑑𝑦𝑑𝑧        [36] 

Here 𝜌= is the constant reference-state density, and the dynamical variables are 𝒗 and 𝜌, for 

which eqns [37] hold.  

1ℋ
1𝒗
=	𝜌=𝒗,	 	 1ℋ

18
= 	𝑔𝑧	         [37] 

The term ρgz in eqn [36] is the gravitational potential energy, and is linear in the dynamical 

variables. Now consider disturbances to a stably stratified, resting basic state 𝒗 = 0, ρ = ρ0(z). 



Although the Casimirs of this system include functions of the potential vorticity, because the 

basic state is at rest, 𝛿ℋ/𝛿𝒗 = 𝟎 at 𝒗 = 0 and this dependence is unnecessary, so we may 

consider Casimirs of the form of eqn [38]. 

𝒞 =∭𝐶(𝜌)  𝑑𝑥𝑑𝑦𝑑𝑧	 with	 0𝒞
08
= 𝐶E(𝜌)      [38] 

Equation [34] then leads to the condition 𝐶E(𝜌<) = −gz. This is the defining relation for the 

function 𝐶(∙). Thus, one has to express gz in terms of the same argument ρ0. This can be done by 

inverting the functional dependence ρ0(z) to obtain Z(ρ0), where Z(ρ0(z)) = z. This is always 

possible provided ρ0(z) is monotonic, which is the case for a stably stratified basic state. This 

yields eqn [39]. 

𝐶(𝜌) = −∫ 𝑔8 𝑍(𝜌v) 𝑑𝜌v          [39] 

From this the pseudoenergy of eqn [35] takes the form [40]. 

𝒜 =∭	{8$
.
|𝒗|. + (𝜌 − 𝜌<)𝑔𝑧 − ∫ 𝑔8

8%
𝑍(𝜌v) 𝑑𝜌v}	 𝑑𝑥𝑑𝑦𝑑𝑧		  [40] 

The first term in the spatial integrand is the kinetic energy and is positive definite; the last two 

terms can be rewritten as in eqn [41]. 

−∫ 𝑔8F8%
<

[𝑍(𝜌< + 𝜌v) − 𝑍(𝜌<)] 𝑑𝜌v       [41] 

 

This is self-evidently positive definite for d𝜌</dz < 0 and has the small-amplitude quadratic 

approximation [42]. 

− G(8F8%)"

.(!8%/!7)
          [42] 

Equation [41] is the exact, finite-amplitude expression for the available potential energy (see 

General Circulation of the Atmosphere: Energy Cycle) of disturbances to a stably stratified, 

resting basic state 𝜌<(z), while eqn [42] is its more familiar small-amplitude counterpart, widely 



used in the theory of internal gravity waves. Similar constructions can be performed to define the 

available potential energy of any stratified fluid system. Although the small-amplitude 

expression of eqn [42] appears to be singular in regions where d𝜌</dz = 0, the finite-amplitude 

expression of eqn [41] remains perfectly well-defined in such regions. 

A benefit of the Hamiltonian perspective on available potential energy is that it is 

immediately clear from the derivation that the basic state around which the pseudoenergy is 

defined need not be at rest. In the case of symmetric circulations, Codoban and Shepherd (2003) 

generalized the concept of available potential energy to include the momentum constraints 

associated with a non-resting basic state, such that centrifugal potential energy is included along 

with gravitational potential energy. This formulation addressed a challenge posed by Lorenz 

(1955) in his original derivation of available potential energy, and showed how within such a 

perspective, the energetics of a mechanically-forced, thermally-damped circulation (as is the case 

in the middle atmosphere) always reflects its causality. For the very different problem of 

subgridscale parameterization in numerical models of the atmosphere, where the resolved scales 

provide the basic state for the unresolved scales, Shaw and Shepherd (2009) applied the concepts 

of pseudoenergy and pseudomomentum (see next section) to derive a theoretical framework 

ensuring the joint conservation of energy and momentum.  

6.2 Pseudomomentum 

The same kind of reasoning can be applied for disturbances to zonally symmetric (x-invariant) 

basic states, assuming that the underlying system possesses the same symmetry. For such states, 

with ∂U/∂x = 0, Noether’s theorem implies that the zonal impulse or momentum invariant 

satisfies eqn [43].  

𝐽 1ℳ
1𝒖
|𝒖	;	𝑼 = 0           [43] 



But just as with eqn [33], there is a Casimir 𝒞 such that δ(ℳ + 𝒞) = 0 at u = U; with this	𝒞, one 

may immediately construct the invariant [44], which is quadratic to leading order in the 

disturbance. 

𝒜 = (ℳ + 𝒞)[u] − (ℳ + 𝒞)[U]         [44] 

This quantity is known as the pseudomomentum. 

We calculate the pseudomomentum for the case of barotropic flow on the beta-plane. Suppose 

we are given a monotonic basic state q0(y). From eqns [14] and [16], with q in place of 𝜔, we 

have eqn [45]. 

0ℳ
0"

= 𝑦,	 	 0𝒞
0"
= 𝐶E(𝑞)         [45] 

The extremal condition δ(ℳ + 𝒞) = 0 at q = q0 then leads to C′(q0) = −y. This is now 

isomorphic to the construction of the available potential energy, replacing gz with y and ρ with q. 

If we define the function Y(·) by Y(q0(y)) = y, then evidently eqn [46] holds. 

𝒜 = ∬w−∫ [𝑌(𝑞< + 𝑞v) − 𝑌(𝑞<)]
"F"%
< 𝑑𝑞vy   𝑑𝑥𝑑𝑦   [46] 

The small-amplitude approximation to the spatial integrand is given by eqn [47]. 

− ("F"%)"

.(!"%/!6)
           [47] 

Equations [46] and [47] are evidently negative definite for dq0/dy > 0, which is the case when 

q0 is dominated by 𝛽y. These rather peculiar expressions have no obvious relation to zonal 

momentum at first sight, but they nevertheless explain why it is that Rossby waves always exert 

an eastward (positive) force when they leave a source region, and a westward (negative) force 

when they dissipate and deposit their momentum in a sink region: they carry negative 

pseudomomentum (see Shepherd, 2020). 



The general nature of the derivation ensures that exactly the same expressions hold for any 

balanced model having the basic form of eqn [13]. If the basic state q0 is chosen to be the zonal 

mean 𝑞, then the zonal mean of eqn [47] becomes eqn [48], where 𝑞E ≡ 𝑞 − 𝑞. 

− "&"

. "'
         [48] 

In the case of stratified QG dynamics, the negative of eqn [48] is known as the Eliassen–Palm 

wave activity, which has been widely used in dynamical meteorology to assess the effect of 

Rossby waves on the zonal mean flow. It is such an effective diagnostic precisely because it 

represents negative pseudomomentum. Moreover, and importantly, its use is not restricted to 

waves. The exact, finite-amplitude expression of eqn [46] ensures that the concept of 

pseudomomentum applies to fully nonlinear, even turbulent disturbances (McIntyre and 

Shepherd, 1987). 

The robust negative definiteness of the pseudomomentum of balanced disturbances explains a 

great deal about the general circulation of the atmosphere. Propagation of synoptic-scale Rossby 

waves away from their source region in the baroclinic storm tracks implies an eastward force in 

the storm track regions, accounting for the maintenance of the westerlies. The westward 

momentum deposition associated with breaking planetary-scale Rossby waves in the stratosphere 

drives the poleward Brewer–Dobson circulation, which is responsible for the observed 

distribution of ozone and other chemical species in the stratosphere. 

7. Stability Theorems 

The pseudoenergy and pseudomomentum are, by their construction, conserved quantities that 

are quadratic to leading order in the disturbance quantities. In fact, their quadratic 

approximations are exactly conserved by the linearized dynamics. (The quadratic approximation 



to the pseudoenergy is the Hamiltonian of the linearized dynamics.) When either of these 

quantities is sign-definite for a given basic state, it follows that that basic state is stable to 

normal-mode instabilities. Indeed, in order to reconcile exponentially growing disturbances with 

conservation of pseudoenergy and pseudomomentum, the latter quantities must vanish for such 

disturbances. This fact provides a useful constraint on the structure of normal-mode instabilities, 

as well as a powerful unifying framework between different models. 

This simple framework accounts for virtually every known stability theorem in dynamical 

meteorology. For resting, stratified basic states in unbalanced models, with pseudoenergy like 

eqn [40] for the Boussinesq model, the condition of positive definite pseudoenergy is the 

statement of static stability. For basic flows in axisymmetric or symmetric stratified unbalanced 

models, the same condition is the statement of symmetric stability, which reduces to Rayleigh’s 

centrifugal stability theorem in the special case of axisymmetric homogeneous flow. These 

stability theorems are all quite analogous to static stability. A different situation arises for 

balanced models. There, the pseudoenergy can take either sign depending on the basic flow. The 

positive-definite and negative-definite cases correspond respectively to Arnold’s first and second 

stability theorems (McIntyre and Shepherd, 1987). (They are analogous to the stability of a rigid 

body rotating about an axis of symmetry corresponding respectively to a maximum or minimum 

moment of inertia.) In the special case of a parallel basic flow, Arnold’s first theorem states that 

the flow is stable if u0/(dq0/dy) < 0, which is the Fjørtoft–Pedlosky theorem. 

With regard to pseudomomentum for balanced models, eqn [46] is sign-definite whenever 

dq0/dy is sign-definite. For barotropic flow with q = 𝜔, this corresponds to Rayleigh’s inflection-

point theorem; on the beta-plane with q = 𝜔 + 𝛽y, to the Rayleigh–Kuo theorem; and for 

stratified QG flow with q given either by its multilevel forms qi or by eqn [21] in the 



continuously stratified case, to the Charney–Stern theorem. For stratified QG dynamics in the 

presence of a lower boundary, the second terms of eqns [23] and [24] become relevant and there 

is an additional contribution to the pseudomomentum involving the temperature distribution on 

the lower boundary; it is isomorphic to the interior eqns [46], [47] and [48], replacing q with 𝜓z. 

Since the climatological temperature gradient along the Earth’s surface is towards the Equator, 

the pseudomomentum associated with surface disturbances is generally positive. In this case the 

Charney–Stern stability criterion is not satisfied for observed flows; on the other hand, normal-

mode instabilities are generally required to involve both temperature disturbances on the lower 

boundary and potential-vorticity disturbances in the interior, in order to create a disturbance with 

zero total pseudomomentum. The Charney model of baroclinic instability is the best-known 

example of this. In the presence of an upper boundary, there is a further contribution to the 

pseudomomentum, with opposite sign to the lower contribution in accord with eqn [24]. Thus in 

the Eady model of baroclinic instability, where the potential vorticity is uniform and the interior 

contribution to the pseudomomentum disappears, the instability can arise from the interaction of 

disturbances on the upper and lower boundaries that together add up to zero total 

pseudomomentum. 

These statements all concern normal-mode stability. But what can be said about stability goes 

much further than this. The existence of finite-amplitude disturbance invariants suggests the 

possibility of nonlinear, or Liapunov stability: namely, that small disturbances stay small for all 

time, where small is defined in terms of some disturbance norm (Holm et al., 1985). 

Mathematically, we say that a basic state U is Liapunov stable to disturbances u′ in a given norm 

ǁu′ǁ if for all ɛ > 0 there exists a δ(ɛ) > 0 such that eqn [49] holds.  

‖𝒖′(0)‖ < 𝛿	 ⟹	 ‖𝒖′(𝑡)‖ < ɛ	 ∀	𝑡     [49] 



Let us see how this applies to static stability for the Boussinesq model considered earlier. 

Suppose that the basic state has dρ0/dz < 0 and that furthermore the basic-state density gradients 

are bounded according to [50] for some constants c1, c2. 

0 < 𝑐/ ≤ −𝑔 !L
!:%

= − G
!:%/!7

≤ 𝑐. < ∞      [50] 

Then eqn [41] for the available potential energy is bounded from above and below according to 

eqn [51].  

/
.
𝑐/(ρ − ρ<). ≤ [41] ≤ /

.
𝑐.(ρ − ρ<).      [51] 

Define the disturbance norm by eqn [52], with c1 ≤ 𝜆 ≤ c2. 

‖(𝒗, 𝜌 − 𝜌<)‖. 	= ∭ /
.
	{𝜌=|𝒗|. + 𝜆(𝜌 − 𝜌<).}	 𝑑𝑥𝑑𝑦𝑑𝑧	 [52] 

Then using eqn [51] we obtain the chain [53] of inequalities, valid for any time t, involving the 

pseudoenergy 𝒜 of eqn [40].  

‖(𝒗, 𝜌 − 𝜌<)(𝑡)‖. ≤ M
N(
𝒜(𝑡) =	 M

N(
𝒜(𝑡) ≤ N"

N(
‖(𝒗, 𝜌 − 𝜌<)(0)‖. [53] 

With the choice δ = �𝑐//𝑐. 𝜀, eqn [53] establishes Liapunov stability in the norm defined by 

eqn [52]. Conservation of pseudoenergy is clearly central to the proof. 

The finite-amplitude stability of stably stratified flow is not too surprising; it corresponds to 

physical intuition, and indeed motivates the very concept of available potential energy, which 

has a long pedigree. What is perhaps more surprising is that exactly the same kinds of 

constructions can be made for all of the stability theorems mentioned above, and for virtually any 

model within the same family. They can also be used to obtain rigorous upper bounds on the 

saturation of normal-mode instabilities, by considering the initial unstable flow (plus 

infinitesimal disturbance) to be a finite-amplitude disturbance to a stable basic state (Shepherd, 

1988a,b). 



8. Conclusion 

Hamiltonian dynamics is considered to provide the backbone of many branches of physics, as it 

represents a ‘metatheory’ that can encompass a variety of detailed theoretical models of the 

phenomena under study and thereby provide a connection between them. In dynamical 

meteorology, there has long been a call for the use of model hierarchies as a way of 

understanding the complexity of the real atmosphere (Hoskins, 1983). Dynamical meteorology is 

part of classical physics, and Hamiltonian dynamics provides the backbone for the model 

hierarchy in this context too. The abstract unifying concepts of pseudoenergy and 

pseudomomentum map directly onto longstanding and widely-used theoretical concepts in 

dynamical meteorology such as (respectively) available potential energy and momentum transfer 

by waves, and explain why they take slightly different forms in different models. Whenever there 

is a theoretical challenge in dynamical meteorology, Hamiltonian dynamics is invariably lying 

below the surface and can often be usefully exploited to provide a solution that can be 

generalized to other models. It deserves to be part of the canon of dynamical meteorology. 
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