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Synopsis

Hamiltonian dynamics describes the evolution of conservative physical systems. Originally
developed as a generalization of Newtonian mechanics, it represents a core component of any
undergraduate physics curriculum. What is not so widely recognized is that the ideal (i.e.
conservative) form of the governing equations used in dynamical meteorology are also
Hamiltonian dynamical systems. This chapter explains how this is so, and some of the
consequences that follow from this fact. It is important to be able to connect theoretical results
across the hierarchy of various models used in dynamical meteorology, from the simplest to the

most complex. Hamiltonian dynamics is what allows one to do precisely that.
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Key points

e The governing equations of dynamical meteorology are examples of Hamiltonian

dynamical systems

e Hamiltonian dynamical structure provides a unifying framework which connects specific

theories across a hierarchy of models

e Wave-activity conservation laws and stability theorems are notable examples

1. Introduction

Hamiltonian dynamics describes the evolution of conservative physical systems. Originally
developed as a generalization of Newtonian mechanics, describing gravitationally driven motion
from the simple pendulum to celestial mechanics, it also applies to such diverse areas of physics
as quantum mechanics, quantum field theory, statistical mechanics, electromagnetism, and optics
— in short, to any physical system for which dissipation is negligible. Dynamical meteorology
consists of the fundamental laws of physics, including Newton’s second law. For many purposes,
diabatic and viscous processes can be neglected and the equations are then conservative. (For
example, in idealized modeling studies, dissipation is often only present for numerical reasons
and is kept as small as possible.) In such cases dynamical meteorology obeys Hamiltonian
dynamics. Even when nonconservative processes are not negligible, it often turns out that
separate analysis of the conservative dynamics, which fully describes the nonlinear interactions,
is essential for an understanding of the complete system, and the Hamiltonian description can
play a useful role in this respect. Energy budgets and momentum transfer by waves are but two

examples.



Hamiltonian dynamics is often associated with conservation of energy, but it is in fact much
more than that. Hamiltonian dynamical systems possess a mathematical structure that ensures
some remarkable properties. Perhaps the most important is the connection between symmetries
and conservation laws known as Noether’s theorem. Well-known examples are the fact that
conservation of energy is linked to symmetry in time, and conservation of momentum to
symmetry in space. Less well-known is the fact that material conservation of potential vorticity,
so crucial to the theory of dynamical meteorology, is also connected to a symmetry by Noether’s
theorem, but to a symmetry that is invisible in the Eulerian formulation of the governing
equations. It turns out that one can exploit the underlying Hamiltonian structure of a system
through the relevant conservation laws even if the explicit form of that structure is not known,
which is useful for applications. As is shown in detail below, symmetry-based conservation laws
provide a general theory of available potential energy, and show why it is that Rossby waves
carry negative zonal momentum, thereby explaining both the maintenance of the westerlies and
the stratospheric Brewer—Dobson circulation. Such laws also provide a powerful way of deriving
stability criteria.

Dynamical meteorologists use a variety of theoretical models, ranging from the fully
compressible equations through the hydrostatic primitive, Boussinesq, and quasi-geostrophic
equations to the barotropic equations. With such a zoo of models, it is crucial to know the extent
to which theories developed for one model carry over to another. Hamiltonian dynamics provides
this unifying framework. All the models just mentioned are in fact Hamiltonian, and models can
be grouped into families according to their Hamiltonian structure. In this way it becomes
immediately apparent, for example, that the Charney—Stern stability theorem for baroclinic

quasi-geostrophic flow is the counterpart to Rayleigh’s inflection-point theorem for barotropic



flow, and that an analogous stability theorem will exist for any balanced model having a similar
Hamiltonian structure, no matter what the definition is of the potential vorticity. Thus, it is
precisely through its abstract character that Hamiltonian dynamics has many powerful
applications in theoretical dynamical meteorology. The main applications discussed here are
presented in Table 1.

The exposition in this Chapter is intended to be self-contained, but is necessarily kept
succinct. In addition to the specific references provided, readers may wish to consult Salmon
(1988), Shepherd (1990) or Morrison (1998) for general treatments of Hamiltonian fluid
dynamics. Note that there are different ways to represent Hamiltonian dynamics: Hamilton’s
principle, Poisson brackets, or the symplectic formulation. In this chapter we follow the

symplectic formulation as being most readily linked to the traditional governing equations.

Table 1: The main applications in theoretical dynamical meteorology discussed in this
chapter, grouped according to their pedigree within Hamiltonian dynamics (pseudoenergy or

pseudomomentum) and their nature (conservation law or stability theorem).

Pseudoenergy Pseudomomentum
Conservation law Available potential energy | Eliassen-Palm wave activity
Static stability Rayleigh-Kuo
Stability theorem Centrifugal stability Charney-Stern
Symmetric stability

2. Canonical and Noncanonical Dynamics

In classical mechanics (Landau and Lifshitz, 1976), canonical Hamiltonian dynamical

systems are those described by Hamilton’s equations (eqns [1]).
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Here H (g, p) is the Hamiltonian function, ¢ = (q1,...,qn) are the generalized coordinates, and p =
(p1,..., pn) the generalized momenta. For so-called natural systems with H= (|p|>/2m)+U(q),

where m is the mass and U the potential energy, eqns [1] immediately lead to eqn [2], which is

Newton’s second law for a conservative system.

dzqi__a_U .
mm = 9a; [l =1, ,N] [2]

Conservation of energy follows directly from eqns [1], for any #, by the chain rule (repeated

indices are summed).

dH 0K dq; , 0K dp; _ 0H OH  OH OH _
dt — dq; dt ~ dp; dt  9q;9p; Op;0q;

[3]
2.1 Symplectic Formulation

The theory of canonical transformations suggests that there is nothing special about the gs and

ps, and Hamilton’s equations [1] can be written in the so-called symplectic form, eqn [4].

duj 6_7-[ .
dt _]l] au]- [l

=1,..,2N] [4]
Ineqn[4],u=(q1,..., gn, p1,..., pv) and ] is given by eqn [5], where / is the N x N identity

matrix.

/= (—01 (I)) 51

J has certain mathematical properties, including skew-symmetry. More generally, one can take
those properties to be the definition of Hamiltonian structure, with J not necessarily of the form

of eqn [5]. The skew-symmetry of | nevertheless guarantees energy conservation (eqn [6]).
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There is an important distinction between systems with a nonsingular (or invertible) /, which
can always be transformed into the canonical form of eqn [5], and those with a singular (or
noninvertible) /. The latter, known as noncanonical systems, possess a special class of invariant

functions known as Casimir invariants (Sudarshan and Mukunda, 1973). These are the solutions

of eqn [7] (for canonical systems the solutions are just constants).

ac [i

That they are necessarily conserved in time then follows from the skew-symmetry of | (eqn [8]).

_ac] OH 6}[]
_6ui u au]-_ aui Y

dc _ 0C du;
dt ~ du; dt

€ _ 4 (8]

o =
The best-known example of a noncanonical Hamiltonian system is Euler’s equations for rigid-
body dynamics (Arnold, 1989). Having an odd number of evolution equations (three in this
case), the system is necessarily noncanonical because any skew-symmetric matrix of odd
dimension must be singular. There is one Casimir invariant for Euler’s equations, the total

angular momentum.

2.2 Noether’s Theorem

For a canonical system, if a particular generalized coordinate ¢; does not appear in the
Hamiltonian, then the Hamiltonian is invariant under changes in that coordinate; in other words,
there is a coordinate symmetry. Translational and rotational symmetries are common examples.
Hamilton’s equations [1] then immediately imply that the corresponding generalized momentum

is conserved: dp;/dt = 0.



This connection between symmetries and conservation laws has a more general and far more

. . oF . e
powerful form. Given a function F(u), define §ru; = € J;; P where ¢ is an infinitesimal
J

parameter; dru is called the infinitesimal variation in # generated by F. (In the canonical case,
Od7u 1s an infinitesimal canonical transformation.) It then follows that the infinitesimal variation

in H generated by F is given by eqn [9].

I 9, oF
OpH =7 -0ru; = Sa_ui]ija_uj [9]

On the other hand, the time evolution of F is given by eqn [10].

dF¥ _ 0F du; _ OF oH
dt - Ju; dt - ou; Y auj

[10]

Using the skew-symmetry of J, eqns [9] and [10] then imply that §#H = 0 if and only if % = 0.
This connects symmetries and conservation laws: the Hamiltonian is invariant under the
variation generated by F (i.e., that variation represents a symmetry of the Hamiltonian) if and
only if F is a conserved quantity. This result, known as Noether’s theorem, is one of the central
results of Hamiltonian dynamics (Arnold, 1989) and underpins many of its applications to
dynamical meteorology.

Casimir invariants are special because §ou = 0. This suggests that they correspond to
invisible symmetries. For example, in rigid-body dynamics the total angular momentum is a
conserved quantity in any description of the motion. In the original canonical description it
corresponds to the rotational symmetry of the dynamics, but in Euler’s equations, where angles
have been eliminated, it enters as a Casimir because the underlying physical symmetry is no

longer explicit.

3. Barotropic Dynamics



In what sense are the models of dynamical meteorology Hamiltonian? Consider what is
probably the simplest such model, the barotropic vorticity equation (eqn [11]), which describes

two-dimensional, nondivergent flow.

Z—‘: =-v Vo =-01,w) [11]

Here w(x,y,t) = Z - (V X v) = V21 is the vorticity, Z is the unit vector in the vertical direction,
v(x,y,t) = Z X Vi is the horizontal velocity, Y (x,y,?) is the streamfunction, and d(f,g) = figy —
/rgx 1s the two-dimensional Jacobian. The candidate Hamiltonian is the conserved energy of this
system, which is just the kinetic energy. The obvious dynamical variable is the vorticity. In order
to cast eqn [11] in the form of eqn [4], we need to regard every point (x,y) in space as indexing a
degree of freedom analogous to the index 7; the sum over i then becomes an integral over space,
functions become functionals, and partial derivatives become functional or variational

derivatives. Thus we write eqn [12].

8H = SH%IVl/JIdedy = [[ Vi - 6V dxdy = [[{V- YSVY) — Péw} dxdy[12]
Assuming for now that the boundary terms vanish, we identify the variational derivative as
OH /dw = — 1. The need to integrate by parts reflects the fact that the effect of a vorticity
perturbation on the kinetic energy density is nonlocal; thus, partial derivatives at fixed points in
space make no sense and variational derivatives are essential. Equation [11] can now be cast in
Hamiltonian form as eqn [13].

=) where = —0d(w,) [13]

Note that J is now a differential operator rather than a matrix. It is evidently skew-symmetric
since || fJg dx dy =— I[ g Jf dx dy (under suitable boundary conditions) for arbitrary functions f;

g.



3.1 Conservation Laws

The form of ] in eqn [13] is clearly singular: any function of w inserted in the argument gives
zero. These then represent Casimir invariants of the system: functionals of the form [14], where
C(*) is an arbitrary differentiable function, evidently satisfy J(6C/dw) = 0.

€= J[ C(w) dxdy with < =C'(w) [14]
The fact that such functionals are conserved in time corresponds to the material conservation of
vorticity expressed by eqn [11].

To identify the momentum invariants, we need to apply Noether’s theorem to the various
spatial symmetries. Suppose that the domain is unbounded, with decay conditions at infinity, so
that there is symmetry in all directions. The variation in @ corresponding to a translation by dx in
the coordinate x is given by dw = —(0w/0x) dx. Setting e = dx, we then need to solve for the

momentum invariant M according to eqn [15].
a M M
—e%z&\,[w:ejaz—ea(w,g) [15]
To within the addition of a Casimir, the solution of eqn [15] is given by 0 M /dw = y. Hence we

may choose M as in eqn [16], where v = (u,v).

v u

M = [[ yo dxdy =ffy(£—£) dxdy = [[u dxdy [16]

The first, elementary form of M given by eqn [16] is known as Kelvin’s impulse (Benjamin,
1984). It represents the y ‘center-of-mass’ of the vorticity distribution, and is in many ways the
preferable form because it is local in w. The final form, however, shows that the invariant M
corresponding to symmetry in x is ultimately just the x-momentum, as expected. The same
argument applied to translation in the coordinate y yields eqn [17].

M =—[[xw dxdy = [[v dxdy [17]



Finally, rotational symmetry leads to eqn [18], where r = (x,y) and » = | r |, which is the angular

momentum about the origin.
M =—[[2r2w dxdy = [[ 2 - (r X v) dxdy [18]

The discussion has so far neglected any contribution from boundary terms. They are easily
included. In the presence of rigid lateral boundaries, for a complete mathematical specification of
the problem, eqn [11] must be supplemented with the conditions [19] on each connected portion

of the boundary.
v-i=0, Zfv-ds=0 [19]

Here 7 is the outward-pointing normal, and s is the vector arc length along the boundary. The
second of eqns [19] represents conservation of circulation, which follows from the underlying
momentum equations but must be included as a separate condition in the vorticity formulation of
the dynamics. Although the circulation integrals along each connected portion of the boundary
are constants in time, they are independent dynamical variables and are needed to determine v
from . The Hamiltonian formulation of eqn [13] may easily be extended to include the
circulation integrals in addition to w as dynamical variables. The Casimir invariants then include
functions of these circulation integrals. With regard to the momentum invariants, of course, the
rigid boundaries must respect the same symmetries; a zonal channel flow with walls at constant y
breaks the translational symmetry in y and the rotational symmetry, leaving only the zonal
impulse of eqn [16] as an invariant. The final equality of eqn [16] is then no longer strictly true,
but the impulse and momentum differ only by terms involving the circulations along the channel
walls, which are Casimirs. Since symmetry-based invariants are only defined to within the

addition of a Casimir in any case, the impulse and momentum are essentially equivalent.



A simplified model of barotropic dynamics is the point-vortex model, where the vorticity is
concentrated in Dirac delta functions. The point-vortex model has been used to study two-
dimensional turbulence and certain kinds of atmospheric flow structures. It also turns out to be
Hamiltonian, and is in fact a canonical system: the Casimirs are built into the model as

parameters through the choice of the point-vortex strengths.

4. Other Balanced Models

The barotropic vorticity equation has a mathematical structure that is analogous to that of
many models of balanced, or potential-vorticity-driven, flow and the results derived above
extend in an obvious way to such systems. Inclusion of the beta effect means simply a change
from w to the potential vorticity ¢ = w + fy. Since dy = 0 (recalling that the coordinate y is like
an index), dq = dw and eqns [11], [12], [13] and [14] go through unchanged with ¢ in place of w.
However the beta effect breaks translational symmetry in y and rotational symmetry, leaving
only the translational symmetry in x represented by the zonal impulse invariant of eqn [16].
Strictly speaking the latter should be written with ¢ in place of @, but the integrals differ by a
constant and so represent the same invariant. Inclusion of topography is no more difficult; one
simply includes an additional topographic term A(x, y) in the definition of ¢. This will generally
break all spatial symmetries, leaving only the energy H and Casimirs C as invariants. This
illustrates a general and important point, namely, that symmetry-based invariants are fragile: a
slight change in the conditions of the problem destroys their conservation properties. In contrast,
the energy and the Casimirs are robust invariants (robust within the conservative context, of
course) that survive such perturbations.

Stratification is most easily introduced in the context of the quasi-geostrophic (QG) model.

Layered QG models are completely trivial extensions of the barotropic system: their evolution is



determined by the potential vorticity ¢i(x, y, ¢) in each layer 7, governed by eqn [11] with g; in
place of w, together with conservation of circulation along any rigid lateral boundaries that may
be present. These are then the dynamical variables. The energy now includes available potential
as well as kinetic energy, but, apart from some geometric factors representing the layer depths,
one still recovers 6H /6q; = — ; in each layer as well as eqn [13] with ¢; in place of w. The
various invariants follow in the obvious way with the spatial integrals summed over the different
layers. The same considerations, incidentally, apply to layered non-QG ‘intermediate’ models
that still have the form of eqn [11] — namely, nondivergent horizontal advection of the potential
vorticity g; within each layer, with the flow in each layer driven by the potential vorticity in all
layers (as described by the particular definition of ¢;).

With continuous stratification and with upper and lower boundaries (at z =1 and z = 0, say),
there is an additional effect. It is well known that the temperature distribution along the upper
and lower boundaries is equivalent to potential vorticity, and independent evolution equations for
these temperature distributions are required to fully specify the continuously stratified QG
system, in addition to the equation for the interior potential vorticity (the latter being eqn [11],
with ¢ in place of w, applied at every value of z; thus, the advection of g remains purely
horizontal). The Eady model is an extreme case where the interior potential vorticity is uniform
and the flow is driven entirely by the temperature distributions on the upper and lower
boundaries; the dynamical structures driven from each boundary are known as Eady edge waves.
Since these temperature distributions also evolve according to eqn [11], with the QG temperature
Y, in place of w, it is not surprising that the same kind of Hamiltonian structure also applies to

this model (McIntyre and Shepherd, 1987). The energy is given by eqn [20].

7 = [[J2{IVy1? + 392} dxdydz [20]



In eqn [20], the reference-state density ps(z) and stratification function S(z) = N?/f* are both
prescribed, with N(z) the buoyancy frequency and f'the Coriolis parameter, and where V is still
just the horizontal gradient operator. With the potential vorticity given by eqn [21], where fand S

are constants, eqn [22] follows.

407,20 = Yox + iy +(29,) +F 4By 21]

53 = [[] 2 yoy, dxdy|_ + [[[(V- (p,$0V$) — papdq) dudydz (22

This is like eqn [12], but with an additional term involving the temperature variations Jy. at the
upper and lower boundaries. Including these as independent dynamical variables, in addition to ¢
(and possibly also circulation terms), the governing equations can be cast in the symplectic form
of eqn [13]. The Casimirs now involve integrals of arbitrary functions of the temperature on the
upper and lower boundaries, in addition to integrals of arbitrary functions of potential vorticity in
the interior (eqn [23]).

¢ = [[f C(q) dxdydz + [[ Co(¥,) dxdyl,=o + [[ C1(¥,) dxdy|,= [23]
The momentum invariants similarly extend in obvious ways: for example, the zonal impulse

invariant is given by eqn [24].
M = [[f [ psy qdxdydz + [[%y i, dxdyl,—g — [[Zy P, dxdyl,-1  [24]

The semi-geostrophic (SG) model is widely used in mesoscale dynamics because of its ability
to represent realistic frontal structures. It turns out that the SG model can also be cast in the form
of eqn [11], and hence in the symplectic form of eqn [13], provided the equations are written in
isentropic—geostrophic coordinates. However, in these coordinates rigid boundaries appear to
move in time (Kushner and Shepherd, 1995a,b). The SG equations, in contrast to the QG

equations, make no geometrical distinction between horizontal and vertical boundaries — this is



why they are also useful for the study of coastal dynamics in physical oceanography — and the
same kind of independent dynamical degrees of freedom encountered in the QG system on upper
and lower boundaries also appear on lateral boundaries. In the special case of channel walls,
these degrees of freedom correspond to coastal Kelvin waves and are analogous in some respects
to the Eady edge waves represented by both the QG and SG systems. They must be taken into

account in the variational calculations, and enter into many of the resulting expressions.
5. Unbalanced Models

Balanced models are controlled by the advection of potential vorticity (perhaps augmented by
the advection of isentropic surfaces on rigid boundaries), so for such models it is natural to seek
a Hamiltonian description analogous to eqn [13]. However, models that include a representation
of gravity waves or other high-frequency oscillations, called unbalanced models, do not fit
within this framework. They necessarily have additional degrees of freedom. For such models, a
description in terms of the velocity field is a more natural way to reflect the Hamiltonian
structure. For example, the rotating shallow-water equations [25] with v (x, y, t) = (u, v) the
horizontal velocity, A(x, y, t) the fluid depth, g the gravitational acceleration, and with constant f;

conserve energy (eqn [26]).
d ~ 1 oh
D (f2+VxV) X0 +V(59]?) = —gVh, T4 V-(hv)=0 [25]
H = [[2{h|v]? + gh?} dxdy [26]

The dynamical variables are v and /4, for which eqns [27] hold.

SH
sv

§H 1
hv, — =

= 2
= 2w + gh [27]

Note that no integration by parts is necessary in this case; this is characteristic of velocity-based

representations of the dynamics. It can easily be verified that eqns [25] may be cast in the



symplectic form ou/ot = J(8H /du) with u = (u, v, h) and | given by eqn [28], where g =

(f + 2 -V X v)/h s the potential vorticity of the shallow-water system.

0 q _ax
j=(-a o -a [28]
—0, -3, O

The matrix (28) is evidently skew-symmetric; the signs on the derivative terms are indeed
correct, since first-order differential operators are themselves skew-symmetric, as with the J in
eqn [13]. The zonal (absolute) momentum invariant is given as expected by eqn [29], for which it
is easy to verify that J(6M /éu) = —0u/Ox in line with Noether’s theorem, and the other
momentum invariants follow similarly.
M = [f h(u — fy) dxdy [29]

The Casimirs are given by eqn [30] for arbitrary functions C(-).

e = [ hC(q) dxdy [30]
Thus, potential vorticity still plays a crucial role in the Hamiltonian description of the dynamics.
Special cases of Casimirs are total mass (C = 1) and total circulation (C = g).

Stratification is easily incorporated. The hydrostatic primitive equations can be cast in
Hamiltonian form isomorphic to that of eqn [28] when expressed in isentropic coordinates. Even
the fully compressible stratified Euler equations, which form the most general system imaginable
for (dry) dynamical meteorology, can be cast in an analogous form, although there are now
additional dynamical variables associated with compressibility. The Casimirs are in this case
given by eqn [31], where p(x, y, z, ?) is the density, 8(x, y, z, f) is the potential temperature, and
q = [(fZ+ V x v) - VO] /p is the Ertel potential vorticity, with v and V now acting in all three

spatial dimensions.

¢ = [[f pC(q,6) dxdydz [31]



The invariance of the Casimirs is of course evident directly from the dynamical equations (eqn
[32]) and reflects the material invariance of ¢ and 6.
M +v-vg=0, Z+vVe=0, Z+V-(pv)=0 [32]

The fully compressible stratified Euler equations are, in fact, a straightforward expression of
Newton’s second law, without constraints such as hydrostatic balance, provided they are
expressed in Lagrangian coordinates (Morrison, 1998). In Lagrangian coordinates, the dynamical
variables are the positions and momenta of fluid elements, which are natural canonical variables.
The thermodynamic fields can be expressed in terms of these variables: p can be written in terms
of the Jacobian of particle positions (which describes the compression of the fluid), while 6 can
just be chosen as one of the Lagrangian coordinates. In this way, the fully compressible stratified
Euler equations represent a canonical Hamiltonian system. But there are six dynamical variables
in the Lagrangian description, compared with only five in the Eulerian description; in
transforming to Eulerian coordinates, a reduction of the phase space takes place. This is where
the potential vorticity comes in. In Lagrangian coordinates, the potential vorticity is still
materially conserved; but what symmetry does it correspond to? The answer is a particle-
relabeling symmetry: if one rearranges fluid elements while preserving the same Eulerian fields,
then the dynamics is unchanged. There is just enough freedom to do this, because there is one
more Lagrangian than Eulerian variable. Upon reduction to the Eulerian description, this
additional degree of freedom disappears, and the particle-relabeling symmetry becomes invisible.

That is why potential vorticity conservation then appears in the form of a Casimir invariant.
6. Disturbance Invariants

Probably the most powerful application of Hamiltonian dynamics to dynamical meteorology

arises in the context of studying the properties of disturbances to basic states. In fluid dynamics,



the question of how to define the energy of a wave has often been a point of confusion if not
contention. For example, in the case of a basic flow, if the wave energy is defined as the energy
in the frame of reference moving with the basic flow, then it is positive definite but not
conserved. On the other hand, if it is defined as the difference energy relative to the basic-flow
energy, then it is conserved but not positive definite. One would like both properties in order to
define normal modes, spectra, etc. Another problem, at first sight unrelated, arises with
momentum. The momentum of a wave would appear to be zero (the average of a sinusoid is
zero), yet waves can certainly transfer momentum,; this is what drives the quasi-biennial
oscillation in the tropical stratosphere, for example. How is one to describe this wave
momentum?

In canonical Hamiltonian mechanics, the disturbance energy about an equilibrium is always
quadratic; from this one assesses stability and defines normal modes. There is no ambiguity. So
why are things not equally clear for fluid dynamics? The answer lies in the noncanonical
Hamiltonian structure of virtually every fluid dynamical system in the Eulerian representation. If

u = U is a steady solution of a Hamiltonian system, then eqn [33] holds.

SH
J 5 lu=u=0 [33]

For a canonical system, the invertibility of J then implies that 0H /ou = 0 at u = U. This means
that U is a conditional extremum of H, and H [u] — H[U] is quadratic in the disturbance.
However, for a noncanonical system none of this follows and the disturbance energy is generally

linear in the disturbance.

6.1 Pseudoenergy



Hamiltonian structure provides the solution to this quandary. Equation [33] is locally the same
as the equation defining the Casimirs, which means that 6 /ou is locally parallel to 6C/ou for

some C (a different C for each choice of U). In other words, there exists a Casimir C such that

eqn [34] holds.
5H s
sule=t = T lusv 4]

Now, both H and C are invariants, and the combined invariant { + C satisfies the extremal
condition 6(H + C) = 0 at u = U. We have thus constructed what we wanted, namely a
disturbance quantity that is conserved and is locally quadratic in the disturbance (eqn [35]).

A=H +C)[u]l - (H +C)[U] [35]
This quantity is known as the pseudoenergy. Provided one has a complete set of Casimirs, eqn
[34] can always be solved for a Hamiltonian system and the pseudoenergy can always be
constructed according to eqn [35]. This is one of the great attractions of Hamiltonian dynamics:
it provides systematic recipes in abstract terms, which can be worked out for any particular
application.

A particularly illuminating application is the subject of available potential energy, highly
useful in energy budget analyses (Shepherd, 1993). We demonstrate the method in the case of
the three-dimensional stratified Boussinesq equations. The energy is given by eqn [36].

H = [[f £ 1vI* + pgz} dxdydz [36]

Here p; is the constant reference-state density, and the dynamical variables are v and p, for

which eqns [37] hold.

SH 5H
= PV 5= 92 [37]

The term pgz in eqn [36] is the gravitational potential energy, and is linear in the dynamical

variables. Now consider disturbances to a stably stratified, resting basic state v = 0, p = po(z).



Although the Casimirs of this system include functions of the potential vorticity, because the
basic state is at rest, 6H /6v = 0 at v = 0 and this dependence is unnecessary, so we may

consider Casimirs of the form of eqn [38].
¢ = [[f C(p) dxdydz with g—z = C'(p) [38]

Equation [34] then leads to the condition C'(py) = —gz. This is the defining relation for the
function C(+). Thus, one has to express gz in terms of the same argument po. This can be done by
inverting the functional dependence po(z) to obtain Z(po), where Z(po(z)) = z. This is always
possible provided po(z) is monotonic, which is the case for a stably stratified basic state. This
yields eqn [39].

Cp) =—["g2(p)dp [39]

From this the pseudoenergy of eqn [35] takes the form [40].
A= [[f EWwP+p-pogz— [, 9Z(p)dp} dxdydz [40]
The first term in the spatial integrand is the kinetic energy and is positive definite; the last two

terms can be rewritten as in eqn [41].

—[77" g[Z(po + P) — Z(py)] dp [41]

This is self-evidently positive definite for dpy/dz < 0 and has the small-amplitude quadratic
approximation [42].

_ 9(p=po)?
2(dpo/dz) [42]

Equation [41] is the exact, finite-amplitude expression for the available potential energy (see
General Circulation of the Atmosphere: Energy Cycle) of disturbances to a stably stratified,

resting basic state py(z), while eqn [42] is its more familiar small-amplitude counterpart, widely



used in the theory of internal gravity waves. Similar constructions can be performed to define the
available potential energy of any stratified fluid system. Although the small-amplitude
expression of eqn [42] appears to be singular in regions where dp,/dz = 0, the finite-amplitude
expression of eqn [41] remains perfectly well-defined in such regions.

A benefit of the Hamiltonian perspective on available potential energy is that it is
immediately clear from the derivation that the basic state around which the pseudoenergy is
defined need not be at rest. In the case of symmetric circulations, Codoban and Shepherd (2003)
generalized the concept of available potential energy to include the momentum constraints
associated with a non-resting basic state, such that centrifugal potential energy is included along
with gravitational potential energy. This formulation addressed a challenge posed by Lorenz
(1955) in his original derivation of available potential energy, and showed how within such a
perspective, the energetics of a mechanically-forced, thermally-damped circulation (as is the case
in the middle atmosphere) always reflects its causality. For the very different problem of
subgridscale parameterization in numerical models of the atmosphere, where the resolved scales
provide the basic state for the unresolved scales, Shaw and Shepherd (2009) applied the concepts
of pseudoenergy and pseudomomentum (see next section) to derive a theoretical framework

ensuring the joint conservation of energy and momentum.
6.2 Pseudomomentum

The same kind of reasoning can be applied for disturbances to zonally symmetric (x-invariant)
basic states, assuming that the underlying system possesses the same symmetry. For such states,
with 0U/0x = 0, Noether’s theorem implies that the zonal impulse or momentum invariant

satisfies eqn [43].

M
J o lu=u=0 [43]



But just as with eqn [33], there is a Casimir C such that (M + C) = 0 at u = U, with this C, one
may immediately construct the invariant [44], which is quadratic to leading order in the
disturbance.
A =M +C)[u] — (M + C)[U] [44]
This quantity is known as the pseudomomentum.
We calculate the pseudomomentum for the case of barotropic flow on the beta-plane. Suppose
we are given a monotonic basic state go(y). From eqns [14] and [16], with ¢ in place of w, we

have eqn [45].

SM 8¢ _
My E=C@ [45]

The extremal condition 6(M + C) = 0 at g = qo then leads to C'(qo) = —y. This is now

isomorphic to the construction of the available potential energy, replacing gz with y and p with q.

If we define the function Y(+) by Y(go(y)) = y, then evidently eqn [46] holds.
A= [[{-f; Y@+ -~ Y(a0)]dq} dxdy [46]

The small-amplitude approximation to the spatial integrand is given by eqn [47].

(q—qo)?
— 1 10 4
2(dqo/dy) [47]

Equations [46] and [47] are evidently negative definite for dgo/dy > 0, which is the case when
qo is dominated by By. These rather peculiar expressions have no obvious relation to zonal
momentum at first sight, but they nevertheless explain why it is that Rossby waves always exert
an eastward (positive) force when they leave a source region, and a westward (negative) force
when they dissipate and deposit their momentum in a sink region: they carry negative

pseudomomentum (see Shepherd, 2020).



The general nature of the derivation ensures that exactly the same expressions hold for any
balanced model having the basic form of eqn [13]. If the basic state go is chosen to be the zonal

mean ¢, then the zonal mean of eqn [47] becomes eqn [48], where ¢’ = q —q.

o [48]

In the case of stratified QG dynamics, the negative of eqn [48] is known as the Eliassen—Palm
wave activity, which has been widely used in dynamical meteorology to assess the effect of
Rossby waves on the zonal mean flow. It is such an effective diagnostic precisely because it
represents negative pseudomomentum. Moreover, and importantly, its use is not restricted to
waves. The exact, finite-amplitude expression of eqn [46] ensures that the concept of
pseudomomentum applies to fully nonlinear, even turbulent disturbances (McIntyre and
Shepherd, 1987).

The robust negative definiteness of the pseudomomentum of balanced disturbances explains a
great deal about the general circulation of the atmosphere. Propagation of synoptic-scale Rossby
waves away from their source region in the baroclinic storm tracks implies an eastward force in
the storm track regions, accounting for the maintenance of the westerlies. The westward
momentum deposition associated with breaking planetary-scale Rossby waves in the stratosphere
drives the poleward Brewer—Dobson circulation, which is responsible for the observed

distribution of 0zone and other chemical species in the stratosphere.
7. Stability Theorems

The pseudoenergy and pseudomomentum are, by their construction, conserved quantities that
are quadratic to leading order in the disturbance quantities. In fact, their quadratic

approximations are exactly conserved by the linearized dynamics. (The quadratic approximation



to the pseudoenergy is the Hamiltonian of the linearized dynamics.) When either of these
quantities is sign-definite for a given basic state, it follows that that basic state is stable to
normal-mode instabilities. Indeed, in order to reconcile exponentially growing disturbances with
conservation of pseudoenergy and pseudomomentum, the latter quantities must vanish for such
disturbances. This fact provides a useful constraint on the structure of normal-mode instabilities,
as well as a powerful unifying framework between different models.

This simple framework accounts for virtually every known stability theorem in dynamical
meteorology. For resting, stratified basic states in unbalanced models, with pseudoenergy like
eqn [40] for the Boussinesq model, the condition of positive definite pseudoenergy is the
statement of static stability. For basic flows in axisymmetric or symmetric stratified unbalanced
models, the same condition is the statement of symmetric stability, which reduces to Rayleigh’s
centrifugal stability theorem in the special case of axisymmetric homogeneous flow. These
stability theorems are all quite analogous to static stability. A different situation arises for
balanced models. There, the pseudoenergy can take either sign depending on the basic flow. The
positive-definite and negative-definite cases correspond respectively to Arnold’s first and second
stability theorems (McIntyre and Shepherd, 1987). (They are analogous to the stability of a rigid
body rotating about an axis of symmetry corresponding respectively to a maximum or minimum
moment of inertia.) In the special case of a parallel basic flow, Arnold’s first theorem states that
the flow is stable if uo/(dgo/dy) < 0, which is the Fjertoft-Pedlosky theorem.

With regard to pseudomomentum for balanced models, eqn [46] is sign-definite whenever
dqo/dy is sign-definite. For barotropic flow with ¢ = w, this corresponds to Rayleigh’s inflection-
point theorem; on the beta-plane with ¢ = w + Sy, to the Rayleigh—Kuo theorem; and for

stratified QG flow with g given either by its multilevel forms ¢; or by eqn [21] in the



continuously stratified case, to the Charney—Stern theorem. For stratified QG dynamics in the
presence of a lower boundary, the second terms of eqns [23] and [24] become relevant and there
is an additional contribution to the pseudomomentum involving the temperature distribution on
the lower boundarys; it is isomorphic to the interior eqns [46], [47] and [48], replacing g with ..
Since the climatological temperature gradient along the Earth’s surface is towards the Equator,
the pseudomomentum associated with surface disturbances is generally positive. In this case the
Charney—Stern stability criterion is not satisfied for observed flows; on the other hand, normal-
mode instabilities are generally required to involve both temperature disturbances on the lower
boundary and potential-vorticity disturbances in the interior, in order to create a disturbance with
zero total pseudomomentum. The Charney model of baroclinic instability is the best-known
example of this. In the presence of an upper boundary, there is a further contribution to the
pseudomomentum, with opposite sign to the lower contribution in accord with eqn [24]. Thus in
the Eady model of baroclinic instability, where the potential vorticity is uniform and the interior
contribution to the pseudomomentum disappears, the instability can arise from the interaction of
disturbances on the upper and lower boundaries that together add up to zero total
pseudomomentum.

These statements all concern normal-mode stability. But what can be said about stability goes
much further than this. The existence of finite-amplitude disturbance invariants suggests the
possibility of nonlinear, or Liapunov stability: namely, that small disturbances stay small for all
time, where small is defined in terms of some disturbance norm (Holm et al., 1985).
Mathematically, we say that a basic state U is Liapunov stable to disturbances #’ in a given norm
lu'l if for all e > O there exists a d(e) > 0 such that eqn [49] holds.

W@l <6 = Ju'@®ll<e Vvt [49]



Let us see how this applies to static stability for the Boussinesq model considered earlier.
Suppose that the basic state has dpo/dz < 0 and that furthermore the basic-state density gradients

are bounded according to [S0] for some constants c1, ca.

az
0<¢gg—g—=-—
1 9 a0 dpo/dz

<< [50]

Then eqn [41] for the available potential energy is bounded from above and below according to

eqn [51].

~c1(p — po)? < [41] < S c,(p — po)? [51]

Define the disturbance norm by eqn [52], with ¢1 £ 1 < ¢».

1@, p =PI = [If 5 {ps|vI? + Alp — po)?} dxdydz [52]

Then using eqn [S1] we obtain the chain [53] of inequalities, valid for any time ¢, involving the

pseudoenergy A of eqn [40].
A i c
I@.p = )OI S 2 AWM =2 A < 2@ p = p) QI [53]

With the choice 6 = \/Cl—/CZ €, eqn [53] establishes Liapunov stability in the norm defined by
eqn [52]. Conservation of pseudoenergy is clearly central to the proof.

The finite-amplitude stability of stably stratified flow is not too surprising; it corresponds to
physical intuition, and indeed motivates the very concept of available potential energy, which
has a long pedigree. What is perhaps more surprising is that exactly the same kinds of
constructions can be made for all of the stability theorems mentioned above, and for virtually any
model within the same family. They can also be used to obtain rigorous upper bounds on the
saturation of normal-mode instabilities, by considering the initial unstable flow (plus

infinitesimal disturbance) to be a finite-amplitude disturbance to a stable basic state (Shepherd,

1988a,b).



8. Conclusion

Hamiltonian dynamics is considered to provide the backbone of many branches of physics, as it
represents a ‘metatheory’ that can encompass a variety of detailed theoretical models of the
phenomena under study and thereby provide a connection between them. In dynamical
meteorology, there has long been a call for the use of model hierarchies as a way of
understanding the complexity of the real atmosphere (Hoskins, 1983). Dynamical meteorology is
part of classical physics, and Hamiltonian dynamics provides the backbone for the model
hierarchy in this context too. The abstract unifying concepts of pseudoenergy and
pseudomomentum map directly onto longstanding and widely-used theoretical concepts in
dynamical meteorology such as (respectively) available potential energy and momentum transfer
by waves, and explain why they take slightly different forms in different models. Whenever there
is a theoretical challenge in dynamical meteorology, Hamiltonian dynamics is invariably lying
below the surface and can often be usefully exploited to provide a solution that can be

generalized to other models. It deserves to be part of the canon of dynamical meteorology.
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