001049660 001__ 1049660
001049660 005__ 20260112202637.0
001049660 0247_ $$2doi$$a10.1016/j.egyai.2025.100577
001049660 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05445
001049660 037__ $$aFZJ-2025-05445
001049660 082__ $$a624
001049660 1001_ $$00000-0003-3394-7498$$aMalek, Ali$$b0
001049660 245__ $$aData-driven modeling of polymer electrolyte fuel cells: Towards predictive analytics with explainable artificial intelligence
001049660 260__ $$aAmsterdam$$bElsevier ScienceDirect$$c2025
001049660 3367_ $$2DRIVER$$aarticle
001049660 3367_ $$2DataCite$$aOutput Types/Journal article
001049660 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768221507_23899
001049660 3367_ $$2BibTeX$$aARTICLE
001049660 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049660 3367_ $$00$$2EndNote$$aJournal Article
001049660 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001049660 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049660 7001_ $$aDreger, Max$$b1
001049660 7001_ $$aShaigan, Nima$$b2
001049660 7001_ $$aSong, Chaojie$$b3
001049660 7001_ $$aMalek, Kourosh$$b4
001049660 7001_ $$aJankovic, Jasna$$b5
001049660 7001_ $$aEikerling, Michael$$b6
001049660 773__ $$0PERI:(DE-600)3017958-0$$a10.1016/j.egyai.2025.100577$$gVol. 21, p. 100577 -$$p100577 -$$tEnergy and AI$$v21$$x2666-5468$$y2025
001049660 8564_ $$uhttps://juser.fz-juelich.de/record/1049660/files/1-s2.0-S2666546825001090-main.pdf$$yOpenAccess
001049660 8767_ $$8E-2025-01404-b$$92025-12-04$$a1200220501$$d2025-12-17$$eAPC$$jZahlung erfolgt
001049660 909CO $$ooai:juser.fz-juelich.de:1049660$$popenaire$$popen_access$$pOpenAPC$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001049660 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001049660 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001049660 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001049660 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001049660 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001049660 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001049660 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:55:10Z
001049660 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-06
001049660 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:55:10Z
001049660 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001049660 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001049660 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:55:10Z
001049660 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-06
001049660 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-06
001049660 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001049660 9201_ $$0I:(DE-Juel1)IET-3-20190226$$kIET-3$$lIET-3$$x0
001049660 9801_ $$aAPC
001049660 9801_ $$aFullTexts
001049660 980__ $$ajournal
001049660 980__ $$aVDB
001049660 980__ $$aUNRESTRICTED
001049660 980__ $$aI:(DE-Juel1)IET-3-20190226
001049660 980__ $$aAPC