| Hauptseite > Workflowsammlungen > Publikationsgebühren > Data-driven modeling of polymer electrolyte fuel cells: Towards predictive analytics with explainable artificial intelligence > print |
| 001 | 1049660 | ||
| 005 | 20260112202637.0 | ||
| 024 | 7 | _ | |a 10.1016/j.egyai.2025.100577 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-05445 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-05445 |
| 082 | _ | _ | |a 624 |
| 100 | 1 | _ | |a Malek, Ali |0 0000-0003-3394-7498 |b 0 |
| 245 | _ | _ | |a Data-driven modeling of polymer electrolyte fuel cells: Towards predictive analytics with explainable artificial intelligence |
| 260 | _ | _ | |a Amsterdam |c 2025 |b Elsevier ScienceDirect |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1768221507_23899 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 536 | _ | _ | |a 1231 - Electrochemistry for Hydrogen (POF4-123) |0 G:(DE-HGF)POF4-1231 |c POF4-123 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Dreger, Max |b 1 |
| 700 | 1 | _ | |a Shaigan, Nima |b 2 |
| 700 | 1 | _ | |a Song, Chaojie |b 3 |
| 700 | 1 | _ | |a Malek, Kourosh |b 4 |
| 700 | 1 | _ | |a Jankovic, Jasna |b 5 |
| 700 | 1 | _ | |a Eikerling, Michael |b 6 |
| 773 | _ | _ | |a 10.1016/j.egyai.2025.100577 |g Vol. 21, p. 100577 - |0 PERI:(DE-600)3017958-0 |p 100577 - |t Energy and AI |v 21 |y 2025 |x 2666-5468 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1049660/files/1-s2.0-S2666546825001090-main.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1049660 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1231 |x 0 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a DEAL: Elsevier 09/01/2023 |0 PC:(DE-HGF)0125 |2 APC |
| 915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-06 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:55:10Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:55:10Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-06 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T08:55:10Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-06 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-06 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IET-3-20190226 |k IET-3 |l IET-3 |x 0 |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IET-3-20190226 |
| 980 | _ | _ | |a APC |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|