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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Developed a comprehensive data-driven 
framework using advanced machine 
learning models to accurately predict 
polarization behavior of polymer elec
trolyte fuel cells.

• Integrated explainable AI techniques 
such as Gini importance or SHAP to 
reveal how key operational and design 
parameters especially voltage, relative 
humidity, platinum loading, and 
ionomer-to-carbon ratio influence 
performance.

• Identified voltage is the top predictor, 
followed by relative humidity, platinum 
loading, and ionomer-to-carbon ratio.

• Model-based support for optimization of 
fabrication, real-time control, and 
durability improvements.

• Providing actionable insights for opti
mization of the fabrication and opera
tion of polymer electrolyte fuel cells.
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A B S T R A C T

Polymer electrolyte fuel cells will be an essential technology of the emerging hydrogen economy. However, 
optimizing their cost and performance necessitates understanding of how different parameters affect their 
operation. This optimization problem involves numerous interrelated design and operational parameters. 
However, developing the required understanding through experimental studies alone would be inefficient. 
Physical modelling is a much-needed complement to experiment but is constrained by simplifying assumptions 
that diminish the models’ predictive capabilities. As a supplement to experiment and physical modelling, we 
employ a data-based assessment that leverages machine learning techniques to support and enhance decision- 
making. We first evaluate the predictive accuracy of various machine learning models, including artificial 
neural networks, to predict the polarization behavior of polymer electrolyte fuel cells, harnessing an extensive 
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experimental dataset. We then apply explainable artificial intelligence techniques, including Gini feature 
importance and Shapley additive explanations value analyses, to understand how these models incorporate data 
into the prediction process. Probabilistic analyses can help identify relationships between predictions and feature 
values. We demonstrate that insights derived from Shapley additive explanations value analysis are consistent 
with literature data on the thermodynamics and kinetics of relevant electrochemical reaction and transport 
processes. Our study highlights the potential of interpretable and explainable tools to offer a holistic analysis of 
the impacts of various interrelated operational and design parameters on the performance of the fuel cell. In the 
future, such explainable tools could help identify gaps in experimental data and pinpoint research priorities.

1. Introduction

Climate change has become an omnipresent, undeniable and 
alarming reality, with environmental and economic implications 
becoming ever more palpable, although the full extent of long-term 
consequences is still not fully graspable [1,2]. This situation urges 
rapid development and adoption of green technologies for power gen
eration and storage. Polymer electrolyte fuel cells (PEFCs) will be an 
essential part of the emerging global energy economy that will be based 
on hydrogen as an energy carrier. PEFCs offer high power density, en
ergy conversion efficiency, and durability, rendering them highly suit
able for applications in stationary power generation and surface 
transportation [3].

Despite their long-recognized promise, PEFCs continue to face 
durability and cost challenges that hinder their large-scale deployment 
[4]. Current cells struggle to maintain a sufficient level of performance, 
especially when the amount of precious metal-based electrocatalysts is 
drastically reduced [5]. Performance and durability of PEFCs are mainly 
determined by processes in the membrane electrode assembly (MEA), 
the power-generating unit of a PEFC, which, in turn, depend on various 
design and operational parameters [4].

The core of the MEA, the so-called catalyst-coated membrane, is a 
sandwich-like structure consisting of the cathode and anode catalyst 
layers (CCL and ACL) that are attached to the two faces of a proton- 
conducting polymer electrolyte membrane (PEM). CL ingredients 
include nanoparticles of the platinum-based electrocatalyst, a carbon- 
based catalyst support and finely dispersed ionomer. Mixed together 
in an ink solution, these ingredients self-assemble into a complex porous 
composite medium, viz. the catalyst layer, that contains solid regions, 
polymer regions as well as a porous network comprising a mix of water- 
and gas-filled pores. Furthermore, the MEA includes so-called gas 
diffusion layers (GDLs) on both electrode sides that facilitate the supply 
of reactant gases and as well as the removal of product water.

Many parameters influence the performance and longevity of PEFCs, 
including the structural properties of components and operating con
ditions [6,7]. Experimental methods have been used to rationalize re
lations between structural properties, operating conditions and MEA 
performance. However, the experimental effort and cost required to 
comprehend fully the multifarious effects of parameters on MEA 
behavior would be unaffordable [8,9].

Computational studies and physical modeling have been employed 
to analyze experimental data, particularly in the modeling of polariza
tion curves, which plot the relationship between cell voltage and current 
density [10,11]. As a key quantification metric of fuel cell performance, 
the polarization curve reveals the interplay of electrochemical reactions 
and transport processes. The analyses of polarization curves is an 
essential tool to delineate and quantify different contributions to voltage 
losses due to electrocatalytic reactions, ohmic losses due to limited 
proton conductivity, and mass transport losses incurred by oxygen 
transport limitations and the corresponding oxygen depletion.

Different modeling approaches are employed to reproduce, analyse, 
and, eventually, predict the performance of PEFCs. Modelling efforts 
encompass empirical models based on mathematical correlations 
[12–14], semi-empirical models combining empirical data with theo
retical insights [15,16], and physics-based analytical models that are 

based on conservation and transport equations [17–22]. Insights from 
polarization curve modeling are crucial to identify and understand 
voltage losses, thus guiding improvements in fuel cell technology.

Variables such as Pt loading, ionomer-to-carbon (I:C) mass ratio, and 
relative humidity (RH) shape the polarization response of the cell and 
determine voltage losses incurred by electrochemical reactions, proton 
transport, reactant gas diffusion, and water transport phenomena. 
Platinum loading refers to the amount of platinum catalyst in the elec
trode. A higher Pt loading is beneficial in terms of the electrocatalytic 
activity, but it also raises the cost of the cell. Muzaffar et al. [20], in their 
model-based analysis, explored how the drastic reduction of the Pt 
loading causes unexpectedly large voltage losses. They were able to link 
this increase to heightened oxygen transport resistances in CCL and 
particularly the GDL on the cathode side. The I:C ratio, impacts per
formance and durability via a complex interplay of phenomena. A 
higher I:C ratio creates beneficial conditions for proton transport and 
electrochemical reactions at interfaces. However, if the amount of ion
omer in the CL is too high, gaseous diffusion of oxygen will be hindered. 
The RH influences the hydration state (or liquid water saturation) of the 
PEM as well as the water distribution in porous electrode and diffusion 
media. Proper hydration ensures high proton conductivity of the PEM. 
In electrode and diffusion media, insufficient or excessive humidifica
tion (i.e., liquid water saturation) affects performance due to dehydra
tion that stifles reactions and proton transport or water flooding that 
hinders gaseous reactant diffusion.

In addition, operating parameters like temperature and pressure 
affect reaction kinetics, transport phenomena, and water management, 
while a large set of intrinsic and effective materials properties (e.g., ion 
exchange capacity of the ionic polymer, membrane thickness, catalyst 
layer porosity, proton conductivity, oxygen diffusivity and gas diffusion 
layer permeability) influence reactant, product, and water transport 
within the cell [11].

Modeling polarization curves for PEFCs must strike a delicate bal
ance of capturing the most relevant parametric effects and, at the same 
time, making use of simplifying assumption that keep the mathematical 
complexity and computational costs involved in solving the model at a 
reasonable level. Accurately capturing the interplay of multiple pa
rameters is complex, as nonlinear interactions between operating con
ditions, materials properties, and transport and reaction phenomena 
render it difficult to isolate individual influences [10]. Furthermore, the 
computational complexity of numerical simulations of 
three-dimensional multiphase models, limits their practical application 
in real-time control and optimization settings for PEFCs [8].

Addressing these challenges, faced by PEFCs, requires advances in 
materials, enhanced operational control, and design improvements. 
Artificial intelligence (AI) and machine learning (ML) tools have proven 
to possess significant potential in addressing some of these limitations in 
PEFCs [2,23,24]. Their growing role in data analysis, system control, 
and design optimization is reflected in the increasing number of patents 
related to these technologies in the energy field [23,24]. They offer new 
avenues for handling the complexities of PEFC technology, aiding in the 
development of fundamental knowledge, material selection, fuel cell 
design, and optimization. AI and ML are effective in managing system 
control, power management, and operational health monitoring 
[24–26]. Among ML models, supervised learning and deep learning (DL) 
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techniques, have shown to be particularly valuable for analyzing PEFC 
polarization behavior [27–29]. Trained on sufficiently large experi
mental datasets, ML can predict performance outcomes under various 
conditions with high accuracy, surpassing traditional modeling tech
niques that often require impractically large computational resources. 
Moreover, ML can facilitate the optimization of MEA properties by 
predicting how changes in material composition or operating conditions 
affect the overall efficiency and longevity of the fuel cells.

Recent advances in AI and ML have the makings of revolutionizing 
PEFC and electrolyzer research, as they could enable more accurate 
prognostics and remaining useful life (RUL) predictions through hybrid 
physics-based and data-driven models that even account for voltage 
recovery [30]. These approaches, often enhanced with explainable AI 
(XAI) techniques like Shapley additive explanations (SHAP), provide 
essential insights into impacts of design and operational parameters and 
pathways to the optimization of performance and lifetime [29,31]. The 
emerging data-driven paradigm will transform the manufacturing pro
cesses and advance clean energy technologies by moving beyond "black 
box" predictions to offer mechanistic understanding [32].

For example, Wang et al. [33] introduced an AI-based framework 
that uses surrogate modelling and optimization to improve the 
maximum power density of PEFCs by optimizing the catalyst layer (CL) 
composition. The framework employs a data-driven surrogate model 
trained with a database generated from a computational fluid dynamics 
(CFD) model, and it demonstrates high accuracy and computational 
efficiency. Rui et al. [34] proposed an ML methodology called SPARK 
(Smart Prediction of Advanced Research on PEMs using 
Knowledge-based machine learning), which predicts the performance 
and durability of PEMs in fuel cell applications. By utilizing the SPARK 
methodology, the design process for ceria-containing PEMs was 
streamlined, reducing experimental costs and development time while 
enabling efficient design with specific characteristics. Recently Ding 
et al. [35] developed visualizable algorithms to aid researchers in 
decision-making to uncover the effect of important MEA parameters. 
They developed a comprehensive set of ML-assisted processes, consist
ing of four modules (feature selection, decision modelling, regression 
modelling and extremum optimization), to address limitations, such as 
inefficient data utilization, lack of comprehensive approaches, and 
lower prediction accuracy, and to achieve high accuracy in predicting 
key performance parameters. Current data-driven approaches have been 
primarily used for making accurate predictions of performance and 
durability , and the operando monitoring of fuel cells. ML techniques are 
utilized in material selection, chemical reaction modeling, and polari
zation curve analyses. For durability, ML aids in diagnosing faults, 
estimating the state of health, and predicting the remaining useful life 
[36]. However, ML models often lack transparency in their 
decision-making processes. These approaches are not capable of 
explaining how different parameters affect the model’s prediction. 
Global and local interpretability and explainability tools may be applied 
to ML models for interpretation [37]. In general, explainable ML tools 
can be divided into global and local explainable methods. Global 
importance methods assess the overall significance of features across the 
entire model, providing a holistic view of feature contributions [31,38,
39]. Conversely, local importance methods, such as SHAP values [40], 
allow evaluating the impact of individual features on the prediction of a 
given target.

To address the limitations of current data-driven approaches, we 
propose a data-driven framework that harnesses ML methods to accu
rately predict the polarization response of PEFCs as function of RH, 
platinum loading, platinum-to-carbon ratio (Pt:C) and ECSA. Unlike 
conventional approaches that treat ML models as “black boxes”, our 
framework integrates a novel combination of both global (e.g., Gini 
feature importance) [38,39] and local (e.g., SHAP values) [40] inter
pretability techniques to provide fundamental understanding on the 
effect of parameters on the polarization behavior. This integrated 
methodology enables mechanistic insight into how specific individual 

parameters influence PEFC performance, thereby bridging the gap be
tween predictive power and scientific fundamental understanding.

Crafting this framework to a point that it able to deliver accurate and 
reliable predictions demanded an extensive effort, including the cura
tion of a vast and diverse dataset, rigorous model training, and valida
tion across diverse array of operating conditions. This is essential for an 
efficient and fast optimization process as is needed to facilitate the 
industrialization of PEFC technology. In addition, the framework 
developed can be readily adapted and applied to other electrochemical 
technologies, including optimization of the emerging PEM water 
electrolysers.

2. Methodology and model implementation

2.1. DATA sources and considered features

In this study, datasets of MEA polarization curves were collected at 
the Fraunhofer ISE in Freiburg, Germany, through standard experi
mental methods, using a conventional single-cell configuration [41]. 
They fabricated MEAs with various Pt loadings and I:C ratios using a 
screen-printing process. A Baltic FuelCells quickConnect® “high amp” 
test cell with straight flow channels and an active area of 3 × 4 cm² was 
employed. MEAs were fabricated using Gore membrane M735.18, and 
cathode catalysts of 40 wt. % and 60 wt. % Pt:C. Pt loading was varied 
from 0.05 to 0.8 mg/cm², and I:C ratios ranged between 0.29 and 1.67. 
The cell was operated at 80 ◦C with fully humidified reactant gases and 
back pressures up to 2.0 bar.

MEAs underwent extensive in situ analyses within a test cell, which 
included polarization curve measurements to evaluate voltage perfor
mance under different operational conditions, cyclic voltammetry to 
determine the electrochemical surface area (ECSA), and humidity 
sweeps to assess the effects of humidity on cell performance. These 
methods provide comprehensive insights into the impact of alterations 
in catalyst layer composition on overall functionality and performance.

Fig. 1(a) and (b) depicts a subset of PEFC polarization curves (see 
Figure S.1 in supporting information for the full set), displaying output 
voltage and power density at RH of 40 % and 100 %. Table 1 lists the 
ranges of parameters that are used to train the ML models for the pre
diction of the MEA performance. In the dataset, RH was the only oper
ating parameter that was adjustable to enhance performance during the 
PEFC operation. Design parameters extracted from the database include 
Pt loading (mg/cm2), Pt:C ratio and I:C ratio.

To ensure the accuracy and reliability of the data-based modelling, 
we took precautions to actively prevent data leakage. Data leakage is a 
common issue that can lead to overly optimistic performance estimates 
and degrade model reliability on new or previously unseen data. It oc
curs when the training process uses features that are not available at 
prediction time. In our study, properties such as maximum power den
sity, which is derived from predicted polarization curves, could cause 
such leakage. To mitigate this risk, we excluded maximum power den
sity and similar derived variables from the input feature set. Instead, the 
parameters used as input features have been restricted to fabrication and 
compositional parameters along with operational parameters which are 
the primary parameters determining the shapes of polarization curves. 
By excluding dependent parameters such as maximum power density, 
we were able to enhance the robustness and relevance of our models, 
ensuring their applicability to real-world PEFC scenarios.

It is worth emphasizing that we have used voltage as an input feature 
to predict the current density in PEFC polarization curves. Using voltage 
as input feature in data-based modeling of PEFCs offers several advan
tages. It enables inverse modeling, which allows for versatile perfor
mance analyses and predictions of current density at various voltage 
points without the need for data model retraining. This enhances the 
model’s versatility, potentially supporting both forward (voltage pre
diction) and inverse (current density prediction) applications, which is 
valuable in different analyses. Furthermore, considering voltage as an 

A. Malek et al.                                                                                                                                                                                                                                  Energy and AI 21 (2025) 100577 

3 



input feature allows ML models to more effectively capture the 
nonlinear relationship between voltage and current density.

The preprocessing of the MEA performance dataset demanded 
several steps to ensure its suitability for ML and DL analyses. The dataset 
underwent a thorough check for missing values and inconsistencies, 
with anomalies addressed to ensure data integrity. Duplicated data en
tries were removed by identifying identical feature values. Outliers were 
detected using the interquartile range (IQR), which defines outliers as 

data points lying below Q1 – 1.5 × IQR or above Q3 + 1.5 × IQR, where 
Q1 and Q3 are the first and third quartiles, respectively. These outliers 
were handled appropriately to prevent skewness in the model training 
process. Furthermore, each feature was standardized to achieve zero 
mean and unit variance, crucial for minimizing biases in ML models, 
particularly those sensitive to input data scales like support vector ma
chines (SVM) [42] and neural networks (NN).

2.2. Machine learning models

A diverse array of ML models was employed to ensure robustness, 
reduce bias, enhance predictive accuracy and to benchmark and 
compare their performance. The models included tree-based algorithms 
such as XGBoost [43] and Random Forest (RF) [44], alongside linear 
models like standard linear regression (LR), Ridge [45] and Lasso 
Regression [46] and advanced boosting algorithms like LightGBM [47], 
and CatBoost [48]. This diverse model selection ensures that both linear 
and non-linear relationships are effectively captured. Ensemble methods 
help reduce overfitting, while regularization techniques in linear models 
prevent the escalation of model complexity. Diversity of the models 

Fig. 1. Polarization and power density of PEFCs under different relative humidity conditions. 
(a) Polarization curves measured at 40 % for a selection of 20 representative cells. 
(b) Corresponding power density curves for the same cells tested at 100 % relative humidity, illustrating the effect of relative humidity on performance.

Table 1 
PEFC performance variables used in machine learning models.

Feature Lower bound Upper bound

Measurement ID 1 145
Pt Loading [mg/cm²] 0.055 0.78
Ionomer [wt %] 15 50
Pt:C Ratio [ %] 40 60
RH [ %] 40 100
ECSA [cm²/cm²] 2.0 298
Voltage [V] 0.19 1.4
Current density [A/cm2] 0 4.55
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allows for efficient management of different data characteristics, e.g., 
multicollinearity and complex interaction effects among variables. The 
dataset was divided into training and testing sets (80 % training and 20 
% testing) and controlled by a fixed random seed to ensure reproduc
ibility. Hyperparameter tuning was conducted through 5-fold Grid
SearchCV during the training phase. This enables a systematic 
exploration of parameter combinations based on cross-validation per
formance [54].

ANN and Deep Belief Networks (DBN) [49] (see supporting infor
mation for more details) with TensorFlow were utilized to further 
enhance the prediction accuracy and account for specific data charac
teristics. The training dataset was augmented to reinforce the models’ 
accuracy and robustness by fitting and interpolating and generating 
additional data points. Data imputation improves the training quality of 
DL models by incorporating a broader range of inputs. This improves the 
reliability of data-based analytics and reduces computational efforts.

Performance metrics were extracted for both training and test 
datasets to evaluate the predictive accuracy for ML and DL models. 
These metrics included root mean square error (RMSE), normalized root 
mean square error (nRMSE), mean absolute error (MAE), coefficient of 
determination (R²), and Pearson correlation coefficient [50]. RMSE and 
MAE determine the magnitude of prediction errors. Values approaching 
0 indicate the greatest accuracy. nRMSE provides an error measurement 
relative to the mean actual value and enhances the interpretability 
across different datasets. R² values are a measure of the model’s con
sistency. R² values approaching 1 indicate the greatest consistency. 
Pearson correlation assesses the linear relationship between observed 
and predicted values.

2.3. EXPLAINABLE machine learning

While ML models are powerful, they often lack interpretability and 
explainability [51]. Gini feature importance [52] and SHAP techniques 
[40] are commonly used to explain ML models. Gini feature importance, 
derived from the Gini impurity, quantifies a feature’s importance by 
measuring the total decrease in node impurity, averaged over all trees in 
the forest. Features that result in larger decreases in Gini impurity are 
considered more important, as they contribute more to the model’s 
prediction. Despite its computational efficiency, Gini importance can be 
biased toward high-cardinality features and may not capture complex 
feature interactions. On the other hand, SHAP value analysis, based on 
Shapley values from game theory, is used to explain the ML models both 
locally and globally. SHAP value analysis determines the contribution of 
each feature to the model’s prediction by treating feature values as 
players in a coalition game [53].

At the local level, features with positive SHAP values have a positive 
impact on predictions, while those with negative values have a negative 
impact. Distribution profiles show how a certain feature influences the 
model’s prediction. The magnitude of SHAP values quantifies the 
maximum and minimum extents to which a feature can alter the pre
dicted values. Overall, SHAP values provide a robust framework for 
interpreting the model’s behavior, identifying influential features, and 
enhancing the transparency of ML predictions.

This model-agnostic approach can be applied to various models, 
including linear regression, decision trees, RFs, gradient boosting 
models, and NNs. Local SHAP values explain a specific prediction by 
attributing contributions to individual features. It can be represented as: 

g(zʹ) = ϕ0 +
∑M

j=1
ϕj ź j (1) 

where g(zʹ) represents the validated ML model output for a simplified 
input ź , ϕ0 is the base value (i.e., the expected model output), z’ⱼ ∈ {0, 1} 
indicates whether feature j is present or absent in the coalition vector z’, 
ϕj is the SHAP value for feature j, and M denotes the number of features. 
Therefore, a higher magnitude of ϕj shows a greater contribution of 

feature j to the prediction compared to others.
While individual SHAP values provide local explanations for specific 

predictions, the global SHAP feature importance analysis aggregates 
these local values across multiple instances accordingly. The aggrega
tion is defined as: 

Ij =
1
N

∑N

i=1

⃒
⃒
⃒ϕ(i)

j

⃒
⃒
⃒ (2) 

where Ij denotes the global importance of feature j, calculated as the 
average absolute SHAP values across all instances, ϕ(i)

j is the SHAP value 
for feature j in instance i, and N is the total number of samples in the 
dataset. Features with higher Ij values are ranked accordingly.

SHAP values possess key properties including additivity, local ac
curacy, missingness and consistency. Additivity allows for the inde
pendent computation and summation of feature contributions. Local 
accuracy ensures that SHAP values match the difference between ex
pected and actual model outputs for given inputs. The missingness 
property assigns a zero value to features that are irrelevant or missing, 
thereby preventing distortion. Lastly, consistency ensures SHAP values 
remain unchanged unless there is a change in contributions of different 
features.

Beeswarm SHAP plots are a powerful and informative visualization 
tool for SHAP value analysis. They offer a comprehensive view of how 
various features influence the model’s decision-making process. A 
Beeswarm plot ranks features vertically according to their importance 
for the model’s predictions based on their mean absolute SHAP values 
across the entire dataset. The most and least important features appear 
at the top and bottom of the plot, respectively. For each feature, the data 
points (i.e., dots) represent individual instances in the dataset (i.e., a row 
in the dataset).

These data points are distributed horizontally along the SHAP value 
axis, reflecting a certain range of variation in their contributions to the 
predicted outcome. Feature importance is ranked based on the extent of 
horizontal distribution. Distribution profiles may appear as a narrow 
band (e.g., 1–2 dots thick) or as clusters of vertically stacked dots, rep
resenting datapoints. A narrow distribution profile indicates that the 
feature has a strong and consistent influence on the model’s predictions. 
This suggests the model sees the data relevant in this narrow range and 
uses them for prediction. If the predicted values are a function of a 
specific feature, the distribution profile for that feature will appear as a 
narrow line. Clustering and vertical stacking of datapoints with the same 
SHAP value, on the other hand, illustrate an insignificant effect on the 
predictive capability of the model. This may be due to a high degree of 
scatter in the raw data (i.e., high standard deviation of values) or the 
lack of a clear relationship between the feature and predicted values. In 
such cases, the model does not tend to use features’ values, especially 
those that show clustering or a vertically stacked distribution profile 
within a specific range when making prediction.

Feature values for each instance (distinct from their SHAP values) 
are represented through a color scale. The highest and lowest values for 
each feature appear as bright red and blue dots, respectively, on the 
color bar of SHAP value plots. Intermediate values appear as different 
shades of violet. This color mapping helps distinguish the effect of low 
versus high feature values on the model’s prediction. For example, if the 
narrow distribution profile is composed mainly of blue dots within a 
certain SHAP value range, it implies that the model uses the lower values 
of that feature to predict the outcome. The SHAP value axis is divided 
into negative and positive regions. If a feature has a positive impact on 
the outcome, the datapoints appear on the positive side. Conversely, the 
negative side of the axis contains the datapoints for features that nega
tively impact the outcome. The extent of a feature’s impact, positive or 
negative, is indicated by the magnitude of its horizontal spread along the 
SHAP axis.
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3. Results and discussions

3.1. Evaluation of models’ prediction accuracy

Fig. 2 (a-h) illustrates the comparison between the measured current 
density values and values predicted by different ML algorithms and ANN 
and DBN methods. The linear behavior of these plots indicates a high 
correlation between predicted and experimental current density values.

Support Vector Regression (SVR), RF, Bagging, CatBoost, XGBoost, 
and Histogram-based Gradient Boosting (Hist Gradient Boosting) [55] 
demonstrated higher predictive accuracy than other models studied. The 
R2 values are listed in Table 2. ANN and DBN models effectively capture 
the non-linear relationships and complex interactions among input 
features. This is important given the dynamic nature of PEFC operation.

Figs. 3(a) and 3(b) show the predictive performance of the models 
based on RMSE and nRMSE values, respectively. The mean RMSE across 
all models was 0.23 ± 0.09. The mean RMSE represents the average 
deviation of the predicted and actual current density values as a direct 
measure of prediction error. To enable a meaningful comparison among 
the models, we normalized the RMSE (resulting in nRMSE) by the 
interquartile range (IQR) of the actual current density values from the 
experimental dataset. This normalization reduces the impact of outliers. 
The mean nRMSE value is 0.097 ± 0.049.

Table 2 compares the performance metrics of all ML models (see 
Table S.1 for training data set and optimal model parameters in sup
porting information). Among the models studied, SVR exhibits the 
lowest RMSE (0.12), nRMSE (0.06) and the highest R² value (0.99). 
These values indicate better predictive accuracy and minimum error for 
SVR. SVR also ranks high in terms of correlation, indicating that the 
model’s ability in effectively capturing the underlying relationships 
between the features and outputs.

The RMSE and nRMSE values for ensemble methods, such as RF and 
Bagging were 0.12 and 0.06, and 0.13 and 0.06, respectively. The pre
dictive accuracy of RF and Bagging closely matches or exceeds that of 
SVR based methods, R² = 0.99. The high prediction accuracy of the 
ensemble techniques can be attributed to their efficacy for modeling 
complex data structures.

The RMSE, nRMSE and R² values for the ANN model were 0.13, 
0.061 and 0.99, respectively (see Table S.2). The prediction accuracy for 
the ANN model, as estimated by the individual performance metrics, 
does not seem to be great. However, it ranks high when all performance 
metrics are taken into account. This may be attributed to ANN’s 
balanced performance for modeling non-linear relationships.

The RMSE, nRMSE and R² values for the DBN model were 0.16, 0.078 
and 0.98, respectively. Both, ANN and DBN models, have correlation 
scores of 0.98. Therefore, ANN and DBN are efficient models in terms of 
data fitting and uncovering the relationships between features and 
predicted values. Effective handling of feature interactions, robustness 
against overfitting, and efficient learning of complex patterns are the 
key characteristics of ANN and DBN models that make them suitable for 
modeling the fuel cell polarization behavior. Specifically, ANN and DBN 
benefit from their DL capabilities, which is necessary for understanding 
subtle, complex and multilayered interactions among input features.

Both CatBoost and XGBoost, as gradient boosting models, achieved 
an RMSE of 0.15 and an R² of 0.985, indicating comparable and high 
predictive accuracy. These models are, therefore, suitable for modeling 
complex predictive scenarios. The RMSE of 0.17 and an R² of 0.98 for the 
histogram-based Gradient Boosting model indicate the model’s capacity 
for addressing complex dataset features.

Linear models including Linear Regression, Ridge, Lasso, and Lars, 
showed similarly high RMSE and nRMSE values of approximately 0.40 
and 0.19, respectively. The R² value for the linear models was approx
imately 0.9, smaller than that for the other models. Since the polariza
tion curves are only linear in the intermediate regime, linear models fail 
to predict the entire range of polarization data. Among the linear 
models, Lasso showed the greatest RMSE value of 0.406, implying the 

method cannot effectively select features in the presence of multiple 
correlated parameters, leading to underfitting. The other models stud
ied, on the other hand, showed unacceptable prediction accuracy. 
AdaBoost, despite its high correlation score, showed the highest RMSE 
and nRMSE values, 0.31 and 0.15, respectively. These values indicate 
substantial average prediction errors. The model’s large MAE value of 
0.26 suggests that AdaBoost is not suitable for outlier predictions and 
modeling complex, non-linear data complexities.

Due to their superior predictive accuracy and reliability, SVR, RF, 
Bagging, XGBoost, CatBoost, and Hist Gradient Boosting were selected 
for feature importance analysis. These models employ ensemble and 
boosting techniques to effectively capture non-linear relationships and 
incorporate regularization to avoid overfitting.

Linear models, such as Linear Regression, Ridge, Lasso, and Lars, 
showed similarly high RMSE and nRMSE values of approximately 0.40 
and 0.19, respectively. The R² value for the linear models was approx
imately 0.90, lower than the other models. These models assume linear 
relationships between variables, limiting their ability to handle the non- 
linear complexities typically present in PEFC data. Among the linear 
models, Lasso showed the highest RMSE value (0.41), indicating its 
disadvantage in feature selection in the presence of multiple correlated 
variables leading to underfitting.

The top performing ML models, SVR, RF, Bagging, XGBoost, Cat
Boost, and Hist Gradient Boosting, along with ANN and DBN, can greatly 
enhance the predictive accuracy and reliability in PEFC systems. These 
models can capture non-linear relationships, employ ensemble and 
boosting techniques, and incorporate regularization to avoid overfitting.

Specifically, ANN and DBN are notable for their DL capabilities, 
which allow for a nuanced understanding of complex, multilayered in
teractions among input features. Their high R² (ANN: 0.99, DBN: 0.98) 
and correlation scores (ANN: 0.98, DBN: 0.98) demonstrate their good 
performance in accurately fitting data and revealing underlying re
lationships between input features and output current density.

Consequently, their sophisticated handling of feature interactions, 
robustness against overfitting, and efficient learning of complex patterns 
make them invaluable for advancing PEFC applications in the energy 
sector.

3.2. Explainable machine learning: feature importance

Fig. 4 (a-d) shows the Gini feature importance ratings, extracted for 
the top-performing models including RF, CatBoost, XGBoost, and 
LightGBM. The Gini importance, a measure of each feature’s contribu
tion to the model’s predictive power, consistently identifies voltage as 
the most significant feature across all models except LightGBM. Pt 
loading and RH show varying levels of importance across different 
models.

RF shows a balanced consideration of all features, except ECSA, 
indicating its efficacy for leveraging a broad spectrum of interdependent 
inputs. For LightGBM, platinum loading was the most significant 
feature. This model uses a gradient-based learning technique, focusing 
on feature interactions. For CatBoost and XG Boost models, voltage and 
RH are the most important features. The algorithms used for these 
models are effective for processing categorical and continuous in
teractions among features.

RH showed a greater importance for XGBoost and LightGBM. For 
these models, I:C and Pt:C ratios were less significant than voltage and 
platinum loading. However, I:C ratio and Pt:C ratio have a great impact 
for RF and CatBoost. ECSA appears to be less important for most models, 
except LightGBM. The variation in feature importance may suggest that 
an ensemble approach, e.g., integrating insights from multiple models, 
may be effective for capturing a broader spectrum of features.

3.3. Explainable machine learning: SHAP values

Fig. 5 (a-d) presents the Beeswarm SHAP value summary plots for the 
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Fig. 2. Correlation between real and predicted current density (A/cm2) values PEFCs using various machine learning models: a) Random Forest (RF), b) Support 
Vector Regression (SVR), c) CatBoost, d) Bagging, e) Histogram-based Gradient Boosting (Hist), f) Extreme Gradient Boosting (XG Boost), g) Artificial Neural Network 
(ANN) and h) Deep Belief Network (DBN).
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top performing models, including SVR, RF, Bagging Regressor, and 
CatBoost. There is a strong correlation observed between the SHAP 
value and Gini feature importance analysis. Both methods indicate that 
voltage has the greatest influence on all models’ predictions. RH ranks as 
the second most important feature. While I:C and Pt:C ratios are 
important across all models, their rankings differ slightly between the 
SVR and other models. Pt loading is ranked higher in importance for the 
RF model compared to the SVR model. ECSA is identified as the least 
important feature across all models except SVR, where ECSA’s contri
bution to the overall prediction of current density is negligible. The 
consistency observed across different explanatory methods underscores 
the reliability of interpretations of feature importance.

Voltage: Voltage has a similar distribution in the SHAP plots for all 
models. Generally, the voltage of an electrochemical cell, Vcell, is the 
equilibrium cell potential E0

cell minus the sum of all overpotentials: 

Vcell = E0
cell − ηact − ηohmic − ηmass (3) 

where ηact, ηohmic and ηmass represent the activation, ohmic and mass 
transport overpotentials, respectively. Generally, polarization curves for 
electrochemical cells show three different regimes including activation 
regime, intermediate (or ohmic) regime and oxygen depletion regime, as 
rationalized and explained in Refs. [11,22].

As the plots in Fig. 5 (a-h) show, close to equilibrium or open circuit 
voltage the current density prediction from the voltage shows the 
highest level of uncertainty, caused by inaccuracies in voltage mea
surements and the high sensitivity of the current to the voltage in this 
region [56,57]. By moving farther from left to right on the horizontal 
axis, the dots representing voltage converge.

In the kinetic regime, the predicted current density is exclusively a 
function of voltage, independent of other features. The activation 
overpotential, relevant in this regime, is a function of operating tem
perature, ECSA, exchange current density, j0, and charge transfer coef
ficient, α. Resistance contributions from ionic and electronic conduction 
minimally affect the voltage, and can be ignored in the kinetic regime. 
However, for this assumption to be true, values of I:C and Pt:C ratios 
must exceed a critical threshold. Specifically, the I:C ratio should be 
greater than 20 %, and the Pt loading should be >0.2 mg/cm².

Moving farther to the right on the horizontal axis, the degree of 
vertical stacking increases again. This region coincides with the onset of 
the intermediate regime in polarization curves. The vertical scattering of 
dots indicates that the model uses features other than voltage to predict 
current density. Voltage in the intermediate region is a function of ohmic 

resistances, primarily incurred by the proton transport. In the interme
diate regime, voltage is strongly dependent on the protonic conductivity 
and the thickness of the CCL. The proton conductivity, in turn, is a 
function of the liquid saturation, which is influenced by local RH, pore 
size distribution, wettability, as well as the dispersion and microstruc
ture of the ionomer [58]. The electronic conductivity is a function of the 
carbon loading (and the type of carbon), Pt:C ratio, I:C ratio and CL 
thickness. As the current increases, datapoints converge in the middle of 
the intermediate region and diverge again into the oxygen depletion 
region.

A cluster of blue dots appears at the end of the positive SHAP value 
axis between 1.2 A/cm2 and 1.8 A/cm2 (SHAP values for SVR in Fig. 5
(b)). This cluster represents the oxygen-depletion regime of polarization 
curves. The high fluxes of oxygen and water required in this regime may 
cause, in addition to significant voltage losses, reversible or irreversible 
structural changes in the transport paths, which depend on the pre
vailing local conditions and the transient protocol of operating states the 
sample has been subdued to. In other words, the repeatability of ex
periments in the oxygen depletion regime is lower compared to that in 
the intermediate region.

Relative humidity: The SHAP value distribution profile for the RH 
shows two distinct unicolor regions, either blue or red corresponding to 
40 % and 100 % RH, respectively. Switching the RH from 100 % to 40 % 
has a negative effect on the predicted current density. The minimum and 
maximum of the predicted current density for the SVR model shift to 
more negative values by approximately 0.15 A and 0.66 A, respectively. 
Positive and negative effects are virtually symmetrical. Other models 
show similar SHAP value profiles for RH.

The proton transport resistance in the MEA decreases as the RH in
creases. Therefore, the effect of RH is expected to be the most pro
nounced in the intermediate regime of the polarization curve. Vertical 
stacking and clustering of dots, observed at both ends of RH bands, 
correspond to the kinetic and oxygen depletion regimes. Vertical 
stacking is more pronounced for the oxygen depletion regime than that 
for the kinetic regime. In the kinetic regime, the current density is small 
and the proton transport resistance is not a controlling factor. Therefore, 
upon increasing the RH the current density remains stable in the kinetic 
regime, as long as the liquid saturation and the ECSA remain relatively 
unaffected by the RH. The vertical stacking of dots in the oxygen 
depletion regime indicates that the predicted current density is not 
significantly affected by the RH, as increased RH (and thus an increased 
liquid saturation) will have negligible or negative effect on mass trans
port. At RH of 100 %, the probability of saturation and flooding in
creases, exacerbating mass transport limitations.

Ionomer to carbon mass ratio (I:C ratio): In the positive region of 
SHAP values, in Fig. 5 (a-d), vertical stacking of blue and red dots in
dicates that ionomer content is not considered as an important feature 
taken into account by the model. In the negative region of SHAP values, 
for I:C ratio in the range of 15 and 20 % (indicated by bright blue dots), a 
negative effect on the predicted current density is observed. The color 
shifting from lighter to darker blue (moving in the positive direction on 
SHAP value axis) implies that when I:C ratio < 25 %, the predicted 
current density decreases by 0.3 A/cm2.

Vertical stacking at larger I:C ratio (dark blue dots) reveals that the 
current density is independent of I:C ratio, when this ratio exceeds a 
certain threshold. This suggests that future research should focus on 
determining the I:C ratio threshold value. Levels of the I:C ratio that 
exceed an optimal value (here the optimal value is expected to lie in the 
range around 30 %) may have an adverse effect on cell performance. An 
excessive amount of ionomer can increase the CL thickness, reduce the 
porosity of the CL and increase the wettability (and, thus, propensity for 
flooding) of the pore space that is needed for gaseous oxygen supply 
[58], pushing the polarization curve into the oxygen depletion region at 
smaller current density.

Pt:C (mass) ratio: The dataset used in this work contained two, high 
and low values for Pt:C ratio, 40 % and 60 %. In Fig. 5 (a-d), vertical 

Table 2 
Comparative performance metrics of various machine learning models for pre
dicting current density in PEFCs.

Model Test 
RMSE

Test 
nRMSE

Test 
MAE

Test 
R²

Test 
Correlation

XGBoost 0.154 0.073 0.105 0.985 0.978
LightGBM 0.195 0.092 0.127 0.977 0.953
Gradient Boost 0.203 0.096 0.145 0.975 0.969
Random Forest 0.125 0.059 0.086 0.990 0.978
Extra Tree 0.170 0.080 0.109 0.982 0.972
Decision Tree 0.170 0.080 0.109 0.982 0.972
AdaBoost 0.315 0.148 0.264 0.939 0.984
CatBoost 0.154 0.073 0.106 0.985 0.974
Linear Regression 0.401 0.189 0.320 0.901 0.957
Ridge 0.401 0.189 0.320 0.901 0.957
Lasso 0.406 0.191 0.327 0.899 0.957
Lars 0.401 0.188 0.323 0.901 0.954
Bagging 0.130 0.061 0.089 0.990 0.978
SVR 0.118 0.056 0.087 0.991 0.979
Hist Gradient 

Boosting
0.168 0.079 0.107 0.983 0.971

Stacking 0.174 0.082 0.114 0.981 0.976
ANN 0.129 0.061 0.093 0.989 0.979
DBN 0.165 0.077 0.130 0.981 0.982
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stacking of blue points in the summary plot for Pt:C ratio of 40 %, 
suggests that the data associated with the lower value for this feature 
were not considered for all model calculations. Instead, the model fo
cuses on data with Pt:C ratio of 60 % for prediction. The standard de
viation of data corresponding to Pt:C ratio of 60 % is smaller than that 
for Pt:C ratio of 40 %.

The Pt:C ratio has a great influence on CL thickness for a given value 
of platinum loading, due to a large difference between platinum and 
carbon densities [41] . Increasing the Pt:C ratio from 40 % to 60 % 
decreases the CL thickness by 33 %. Reducing the CL thickness leads to 
an increase in proton conductance (and electron conductance). Like
wise, the pathways for oxygen diffusion become shorter with decreasing 
CL thickness, which is beneficial. At Pt:C ratios of 60 % and 40 %, 
depending on other features, predicted current density values may in
crease by 0.3 A/cm2 in the voltage range between 0.6 and 0.75 V

Platinum loading: The SHAP summary plots for different models in 
Fig. 5 (a-d) show a similar effect for platinum loading. The negative 
regions of SHAP value plots for Bagging Regressor and CatBoost reveal a 

greater decrease in predicted current density for lower values of plat
inum loading in comparison with those for SVR and RFs. The maximum 
decrease in predicted current density values for minimum platinum 
loading was approximately 0.55 A/cm2 for Bagging Regressor and Cat
Boost models.

Distribution of SHAP values suggest that the lower values of Pt 
loading (blue dots) negatively affect the predicted current density in 
kinetic and intermediate regimes. Higher values (red dots) of platinum 
loading show clustering, indicating that the model does not rely on the 
higher values of platinum loading. A minimum threshold value for Pt 
loading is required to achieve an acceptable performance. Greater 
values will make no difference for the current density prediction. This is 
consistent with the threshold value reported in the work by Muzaffar et 
al., which was found in the range of 0.05–0.1 mg cm-2 [20]. In the ox
ygen depletion regime, the current density is independent of Pt loading 
as indicated by clustering of blue and red dots. Increasing Pt loading 
causes an increase in CL thickness, which let oxygen transport losses 
grow [20,41]. The reduction in kinetic losses resulting from increased Pt 

Fig. 3. a) Root Mean Squared Error (RMSE), and b) Normalized Root Mean Squared Error (nRMSE) for predicted current density values using various machine 
learning models.
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loading is compensated by the increase of ohmic transport losses in the 
intermediate regime and overcompensated by the transport losses (due 
to oxygen and protons combined) in the oxygen depletion regime.

ECSA: For ECSA, the SHAP summary plots in Fig. 5 (a-d) show points 
densely clustered around zero SHAP values. Irrespective of variations in 
ECSA values, the impact on the model’s prediction of the current density 
is negligible. ECSA is a complex function of volume fractions of Pt, Pt:C 
ratio, I:C ratio, and porosity in the CL.

Overall, as demonstrated with this analysis and discussion, explain
able AI methods can provide valuable information on how different 
features affect predicted current density values in different regimes of 
PEFC polarization curves. The foregoing discussion exemplifies, how 
this analysis could single out certain features as important factors in the 
prediction (and thus design) process; however, this discussion is by no 
means meant to be comprehensive in this regard. Our discussion reveals 
that the feature sensitivity varies significantly, depending on the regime 
of a polarization curve that is considered.

If the interpretations reached on the basis of explainable AI methods 
are consistent with independent experimental findings, valuable con
clusions about mechanistic or parametric effects may be drawn from 
them. Therefore, the application of such methods will be able to yield 

recommendations for a more focused and more efficient research pro
cess in designing and optimizing MEAs for PEFCs.

4. Conclusion

This study has demonstrated a robust data-driven framework for 
modeling of PEFC polarization behaviour, using various advanced ML 
techniques including ensemble methods such as RF, CatBoost and ANN 
and DBN models. These models achieved exceptional predictive accu
racy, with R² values nearing 0.99 and a low RMSE, effectively capturing 
the non-linear dynamics of PEFC operation and surpassing the limita
tions of traditional linear and physics-based models.

By integrating explainable AI tools, such as Gini feature importance 
and SHAP value analysis, the study provides deep mechanistic insights 
into PEFC performance. SHAP value analysis statistically qualifies and 
quantifies the effect of different features and their value ranges on the 
model’s predicted current density values.

The results of the detailed feature analysis were interpreted in terms 
of the physical phenomena occurring in an MEA in different regimes of 
polarization curves. Based on SHAP analysis and Gini feature impor
tance results, voltage was identified as the most influential feature in 

Fig. 4. Comparative Gini feature importance values from various machine learning models used for predicting current density in PEFCs. (a) Random Forest, (b) 
CatBoost, (c) XGBoost, and (d) LightGBM.
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current density prediction models. RH significantly affected proton 
transport resistance in the intermediate regime, while platinum loading 
and I:C mass ratio revealed optimal thresholds for enhancing efficiency 
and durability.

The models’ decisions on using feature values for predicting current 
density were found to be realistic and consistent with findings reported 
in the literature. These interpretable ML models enable precise identi
fication of key performance drivers, facilitating targeted improvements 
in PEFC design. Integrating fabrication data enhances the linkage be
tween catalyst characterization and performance outcomes in PEFCs, 
revealing how precise manufacturing techniques impact fuel cell effi
ciency and durability.

Our approach, enhanced by explainable AI tools, is expected to be 
able to inform advanced fabrication processes, towards achieving 
optimal performance and extended operational life of fuel cells. 

Interpretable ML models, such as those employed, enable precise iden
tification of key performance drivers, facilitating targeted improve
ments in PEFC design.

This insight-driven approach, implemented for PEFCs, should be 
adaptable to other applications, such as PEM water electrolysis. The 
models also lay the foundation for digital twins, enabling real-time 
monitoring and optimization of PEFC operation.

Future work could enhance this approach by integrating data-driven 
models with physics-based models, merging the computational effi
ciency of ML with the mechanistic accuracy of physical models to 
improve adaptability to dynamic conditions and long-term performance 
forecasting. Such a combined approach could enable more effective 
adaptation to changing operational conditions and improved long-term 
performance forecasting, ultimately maximizing fuel cell lifespan and 
efficiency. In addition, future work will include external validation 

Fig. 5. Beeswarm SHAP plot for a) SVR, b) Random Forest, c) Bagging, and d) CatBoost, illustrating feature impacts with high values in red and low values in blue, 
across all features in the top-performing models.
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using independent datasets to assess the robustness and generalizability 
of the proposed framework.
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