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ARTICLE INFO ABSTRACT
Keywords: Polymer electrolyte fuel cells will be an essential technology of the emerging hydrogen economy. However,
Polymer electrolyte fuel cells optimizing their cost and performance necessitates understanding of how different parameters affect their

Membrane electrode assembly

operation. This optimization problem involves numerous interrelated design and operational parameters.
Machine learning

. o However, developing the required understanding through experimental studies alone would be inefficient.
Explainable artificial intelligence . L. . . . . cps .
Performance prediction Physical modelling is a much-needed complement to experiment but is constrained by simplifying assumptions
Shapley additive explanations that diminish the models’ predictive capabilities. As a supplement to experiment and physical modelling, we

employ a data-based assessment that leverages machine learning techniques to support and enhance decision-
making. We first evaluate the predictive accuracy of various machine learning models, including artificial
neural networks, to predict the polarization behavior of polymer electrolyte fuel cells, harnessing an extensive
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experimental dataset. We then apply explainable artificial intelligence techniques, including Gini feature
importance and Shapley additive explanations value analyses, to understand how these models incorporate data
into the prediction process. Probabilistic analyses can help identify relationships between predictions and feature
values. We demonstrate that insights derived from Shapley additive explanations value analysis are consistent
with literature data on the thermodynamics and kinetics of relevant electrochemical reaction and transport
processes. Our study highlights the potential of interpretable and explainable tools to offer a holistic analysis of
the impacts of various interrelated operational and design parameters on the performance of the fuel cell. In the
future, such explainable tools could help identify gaps in experimental data and pinpoint research priorities.

1. Introduction

Climate change has become an omnipresent, undeniable and
alarming reality, with environmental and economic implications
becoming ever more palpable, although the full extent of long-term
consequences is still not fully graspable [1,2]. This situation urges
rapid development and adoption of green technologies for power gen-
eration and storage. Polymer electrolyte fuel cells (PEFCs) will be an
essential part of the emerging global energy economy that will be based
on hydrogen as an energy carrier. PEFCs offer high power density, en-
ergy conversion efficiency, and durability, rendering them highly suit-
able for applications in stationary power generation and surface
transportation [3].

Despite their long-recognized promise, PEFCs continue to face
durability and cost challenges that hinder their large-scale deployment
[4]. Current cells struggle to maintain a sufficient level of performance,
especially when the amount of precious metal-based electrocatalysts is
drastically reduced [5]. Performance and durability of PEFCs are mainly
determined by processes in the membrane electrode assembly (MEA),
the power-generating unit of a PEFC, which, in turn, depend on various
design and operational parameters [4].

The core of the MEA, the so-called catalyst-coated membrane, is a
sandwich-like structure consisting of the cathode and anode catalyst
layers (CCL and ACL) that are attached to the two faces of a proton-
conducting polymer electrolyte membrane (PEM). CL ingredients
include nanoparticles of the platinum-based electrocatalyst, a carbon-
based catalyst support and finely dispersed ionomer. Mixed together
in an ink solution, these ingredients self-assemble into a complex porous
composite medium, viz. the catalyst layer, that contains solid regions,
polymer regions as well as a porous network comprising a mix of water-
and gas-filled pores. Furthermore, the MEA includes so-called gas
diffusion layers (GDLs) on both electrode sides that facilitate the supply
of reactant gases and as well as the removal of product water.

Many parameters influence the performance and longevity of PEFCs,
including the structural properties of components and operating con-
ditions [6,7]. Experimental methods have been used to rationalize re-
lations between structural properties, operating conditions and MEA
performance. However, the experimental effort and cost required to
comprehend fully the multifarious effects of parameters on MEA
behavior would be unaffordable [8,9].

Computational studies and physical modeling have been employed
to analyze experimental data, particularly in the modeling of polariza-
tion curves, which plot the relationship between cell voltage and current
density [10,11]. As a key quantification metric of fuel cell performance,
the polarization curve reveals the interplay of electrochemical reactions
and transport processes. The analyses of polarization curves is an
essential tool to delineate and quantify different contributions to voltage
losses due to electrocatalytic reactions, ohmic losses due to limited
proton conductivity, and mass transport losses incurred by oxygen
transport limitations and the corresponding oxygen depletion.

Different modeling approaches are employed to reproduce, analyse,
and, eventually, predict the performance of PEFCs. Modelling efforts
encompass empirical models based on mathematical correlations
[12-14], semi-empirical models combining empirical data with theo-
retical insights [15,16], and physics-based analytical models that are

based on conservation and transport equations [17-22]. Insights from
polarization curve modeling are crucial to identify and understand
voltage losses, thus guiding improvements in fuel cell technology.

Variables such as Pt loading, ionomer-to-carbon (I:C) mass ratio, and
relative humidity (RH) shape the polarization response of the cell and
determine voltage losses incurred by electrochemical reactions, proton
transport, reactant gas diffusion, and water transport phenomena.
Platinum loading refers to the amount of platinum catalyst in the elec-
trode. A higher Pt loading is beneficial in terms of the electrocatalytic
activity, but it also raises the cost of the cell. Muzaffar et al. [20], in their
model-based analysis, explored how the drastic reduction of the Pt
loading causes unexpectedly large voltage losses. They were able to link
this increase to heightened oxygen transport resistances in CCL and
particularly the GDL on the cathode side. The I:C ratio, impacts per-
formance and durability via a complex interplay of phenomena. A
higher I:C ratio creates beneficial conditions for proton transport and
electrochemical reactions at interfaces. However, if the amount of ion-
omer in the CL is too high, gaseous diffusion of oxygen will be hindered.
The RH influences the hydration state (or liquid water saturation) of the
PEM as well as the water distribution in porous electrode and diffusion
media. Proper hydration ensures high proton conductivity of the PEM.
In electrode and diffusion media, insufficient or excessive humidifica-
tion (i.e., liquid water saturation) affects performance due to dehydra-
tion that stifles reactions and proton transport or water flooding that
hinders gaseous reactant diffusion.

In addition, operating parameters like temperature and pressure
affect reaction kinetics, transport phenomena, and water management,
while a large set of intrinsic and effective materials properties (e.g., ion
exchange capacity of the ionic polymer, membrane thickness, catalyst
layer porosity, proton conductivity, oxygen diffusivity and gas diffusion
layer permeability) influence reactant, product, and water transport
within the cell [11].

Modeling polarization curves for PEFCs must strike a delicate bal-
ance of capturing the most relevant parametric effects and, at the same
time, making use of simplifying assumption that keep the mathematical
complexity and computational costs involved in solving the model at a
reasonable level. Accurately capturing the interplay of multiple pa-
rameters is complex, as nonlinear interactions between operating con-
ditions, materials properties, and transport and reaction phenomena
render it difficult to isolate individual influences [10]. Furthermore, the
computational ~ complexity of numerical simulations  of
three-dimensional multiphase models, limits their practical application
in real-time control and optimization settings for PEFCs [8].

Addressing these challenges, faced by PEFCs, requires advances in
materials, enhanced operational control, and design improvements.
Artificial intelligence (AI) and machine learning (ML) tools have proven
to possess significant potential in addressing some of these limitations in
PEFCs [2,23,24]. Their growing role in data analysis, system control,
and design optimization is reflected in the increasing number of patents
related to these technologies in the energy field [23,24]. They offer new
avenues for handling the complexities of PEFC technology, aiding in the
development of fundamental knowledge, material selection, fuel cell
design, and optimization. Al and ML are effective in managing system
control, power management, and operational health monitoring
[24-26]. Among ML models, supervised learning and deep learning (DL)
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techniques, have shown to be particularly valuable for analyzing PEFC
polarization behavior [27-29]. Trained on sufficiently large experi-
mental datasets, ML can predict performance outcomes under various
conditions with high accuracy, surpassing traditional modeling tech-
niques that often require impractically large computational resources.
Moreover, ML can facilitate the optimization of MEA properties by
predicting how changes in material composition or operating conditions
affect the overall efficiency and longevity of the fuel cells.

Recent advances in Al and ML have the makings of revolutionizing
PEFC and electrolyzer research, as they could enable more accurate
prognostics and remaining useful life (RUL) predictions through hybrid
physics-based and data-driven models that even account for voltage
recovery [30]. These approaches, often enhanced with explainable Al
(XAI) techniques like Shapley additive explanations (SHAP), provide
essential insights into impacts of design and operational parameters and
pathways to the optimization of performance and lifetime [29,31]. The
emerging data-driven paradigm will transform the manufacturing pro-
cesses and advance clean energy technologies by moving beyond "black
box" predictions to offer mechanistic understanding [32].

For example, Wang et al. [33] introduced an Al-based framework
that uses surrogate modelling and optimization to improve the
maximum power density of PEFCs by optimizing the catalyst layer (CL)
composition. The framework employs a data-driven surrogate model
trained with a database generated from a computational fluid dynamics
(CFD) model, and it demonstrates high accuracy and computational
efficiency. Rui et al. [34] proposed an ML methodology called SPARK
(Smart Prediction of Advanced Research on PEMs using
Knowledge-based machine learning), which predicts the performance
and durability of PEMs in fuel cell applications. By utilizing the SPARK
methodology, the design process for ceria-containing PEMs was
streamlined, reducing experimental costs and development time while
enabling efficient design with specific characteristics. Recently Ding
et al. [35] developed visualizable algorithms to aid researchers in
decision-making to uncover the effect of important MEA parameters.
They developed a comprehensive set of ML-assisted processes, consist-
ing of four modules (feature selection, decision modelling, regression
modelling and extremum optimization), to address limitations, such as
inefficient data utilization, lack of comprehensive approaches, and
lower prediction accuracy, and to achieve high accuracy in predicting
key performance parameters. Current data-driven approaches have been
primarily used for making accurate predictions of performance and
durability , and the operando monitoring of fuel cells. ML techniques are
utilized in material selection, chemical reaction modeling, and polari-
zation curve analyses. For durability, ML aids in diagnosing faults,
estimating the state of health, and predicting the remaining useful life
[36]. However, ML models often lack transparency in their
decision-making processes. These approaches are not capable of
explaining how different parameters affect the model’s prediction.
Global and local interpretability and explainability tools may be applied
to ML models for interpretation [37]. In general, explainable ML tools
can be divided into global and local explainable methods. Global
importance methods assess the overall significance of features across the
entire model, providing a holistic view of feature contributions [31,38,
39]. Conversely, local importance methods, such as SHAP values [40],
allow evaluating the impact of individual features on the prediction of a
given target.

To address the limitations of current data-driven approaches, we
propose a data-driven framework that harnesses ML methods to accu-
rately predict the polarization response of PEFCs as function of RH,
platinum loading, platinum-to-carbon ratio (Pt:C) and ECSA. Unlike
conventional approaches that treat ML models as “black boxes”, our
framework integrates a novel combination of both global (e.g., Gini
feature importance) [38,39] and local (e.g., SHAP values) [40] inter-
pretability techniques to provide fundamental understanding on the
effect of parameters on the polarization behavior. This integrated
methodology enables mechanistic insight into how specific individual
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parameters influence PEFC performance, thereby bridging the gap be-
tween predictive power and scientific fundamental understanding.

Crafting this framework to a point that it able to deliver accurate and
reliable predictions demanded an extensive effort, including the cura-
tion of a vast and diverse dataset, rigorous model training, and valida-
tion across diverse array of operating conditions. This is essential for an
efficient and fast optimization process as is needed to facilitate the
industrialization of PEFC technology. In addition, the framework
developed can be readily adapted and applied to other electrochemical
technologies, including optimization of the emerging PEM water
electrolysers.

2. Methodology and model implementation
2.1. DATA sources and considered features

In this study, datasets of MEA polarization curves were collected at
the Fraunhofer ISE in Freiburg, Germany, through standard experi-
mental methods, using a conventional single-cell configuration [41].
They fabricated MEAs with various Pt loadings and I:C ratios using a
screen-printing process. A Baltic FuelCells quickConnect® “high amp”
test cell with straight flow channels and an active area of 3 x 4 cm? was
employed. MEAs were fabricated using Gore membrane M735.18, and
cathode catalysts of 40 wt. % and 60 wt. % Pt:C. Pt loading was varied
from 0.05 to 0.8 mg/cm?, and I:C ratios ranged between 0.29 and 1.67.
The cell was operated at 80 °C with fully humidified reactant gases and
back pressures up to 2.0 bar.

MEAs underwent extensive in situ analyses within a test cell, which
included polarization curve measurements to evaluate voltage perfor-
mance under different operational conditions, cyclic voltammetry to
determine the electrochemical surface area (ECSA), and humidity
sweeps to assess the effects of humidity on cell performance. These
methods provide comprehensive insights into the impact of alterations
in catalyst layer composition on overall functionality and performance.

Fig. 1(a) and (b) depicts a subset of PEFC polarization curves (see
Figure S.1 in supporting information for the full set), displaying output
voltage and power density at RH of 40 % and 100 %. Table 1 lists the
ranges of parameters that are used to train the ML models for the pre-
diction of the MEA performance. In the dataset, RH was the only oper-
ating parameter that was adjustable to enhance performance during the
PEFC operation. Design parameters extracted from the database include
Pt loading (mg/cm?), Pt:C ratio and I:C ratio.

To ensure the accuracy and reliability of the data-based modelling,
we took precautions to actively prevent data leakage. Data leakage is a
common issue that can lead to overly optimistic performance estimates
and degrade model reliability on new or previously unseen data. It oc-
curs when the training process uses features that are not available at
prediction time. In our study, properties such as maximum power den-
sity, which is derived from predicted polarization curves, could cause
such leakage. To mitigate this risk, we excluded maximum power den-
sity and similar derived variables from the input feature set. Instead, the
parameters used as input features have been restricted to fabrication and
compositional parameters along with operational parameters which are
the primary parameters determining the shapes of polarization curves.
By excluding dependent parameters such as maximum power density,
we were able to enhance the robustness and relevance of our models,
ensuring their applicability to real-world PEFC scenarios.

It is worth emphasizing that we have used voltage as an input feature
to predict the current density in PEFC polarization curves. Using voltage
as input feature in data-based modeling of PEFCs offers several advan-
tages. It enables inverse modeling, which allows for versatile perfor-
mance analyses and predictions of current density at various voltage
points without the need for data model retraining. This enhances the
model’s versatility, potentially supporting both forward (voltage pre-
diction) and inverse (current density prediction) applications, which is
valuable in different analyses. Furthermore, considering voltage as an
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Fig. 1. Polarization and power density of PEFCs under different relative humidity conditions.

(a) Polarization curves measured at 40 % for a selection of 20 representative cells.

(b) Corresponding power density curves for the same cells tested at 100 % relative humidity, illustrating the effect of relative humidity on performance.

Table 1

PEFC performance variables used in machine learning models.
Feature Lower bound Upper bound
Measurement ID 1 145
Pt Loading [mg/cm?] 0.055 0.78
Ionomer [wt %] 15 50
Pt:C Ratio [ %] 40 60
RH [ %] 40 100
ECSA [cm?*/cm?] 2.0 298
Voltage [V] 0.19 1.4
Current density [A/cm?] 0 4.55

input feature allows ML models to more effectively capture the
nonlinear relationship between voltage and current density.

The preprocessing of the MEA performance dataset demanded
several steps to ensure its suitability for ML and DL analyses. The dataset
underwent a thorough check for missing values and inconsistencies,
with anomalies addressed to ensure data integrity. Duplicated data en-
tries were removed by identifying identical feature values. Outliers were
detected using the interquartile range (IQR), which defines outliers as

data points lying below Q1 — 1.5 x IQR or above Q3 + 1.5 x IQR, where
Q1 and Q3 are the first and third quartiles, respectively. These outliers
were handled appropriately to prevent skewness in the model training
process. Furthermore, each feature was standardized to achieve zero
mean and unit variance, crucial for minimizing biases in ML models,
particularly those sensitive to input data scales like support vector ma-
chines (SVM) [42] and neural networks (NN).

2.2. Machine learning models

A diverse array of ML models was employed to ensure robustness,
reduce bias, enhance predictive accuracy and to benchmark and
compare their performance. The models included tree-based algorithms
such as XGBoost [43] and Random Forest (RF) [44], alongside linear
models like standard linear regression (LR), Ridge [45] and Lasso
Regression [46] and advanced boosting algorithms like LightGBM [47],
and CatBoost [48]. This diverse model selection ensures that both linear
and non-linear relationships are effectively captured. Ensemble methods
help reduce overfitting, while regularization techniques in linear models
prevent the escalation of model complexity. Diversity of the models
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allows for efficient management of different data characteristics, e.g.,
multicollinearity and complex interaction effects among variables. The
dataset was divided into training and testing sets (80 % training and 20
% testing) and controlled by a fixed random seed to ensure reproduc-
ibility. Hyperparameter tuning was conducted through 5-fold Grid-
SearchCV during the training phase. This enables a systematic
exploration of parameter combinations based on cross-validation per-
formance [54].

ANN and Deep Belief Networks (DBN) [49] (see supporting infor-
mation for more details) with TensorFlow were utilized to further
enhance the prediction accuracy and account for specific data charac-
teristics. The training dataset was augmented to reinforce the models’
accuracy and robustness by fitting and interpolating and generating
additional data points. Data imputation improves the training quality of
DL models by incorporating a broader range of inputs. This improves the
reliability of data-based analytics and reduces computational efforts.

Performance metrics were extracted for both training and test
datasets to evaluate the predictive accuracy for ML and DL models.
These metrics included root mean square error (RMSE), normalized root
mean square error (nRMSE), mean absolute error (MAE), coefficient of
determination (R?), and Pearson correlation coefficient [50]. RMSE and
MAE determine the magnitude of prediction errors. Values approaching
0 indicate the greatest accuracy. nRMSE provides an error measurement
relative to the mean actual value and enhances the interpretability
across different datasets. R? values are a measure of the model’s con-
sistency. R? values approaching 1 indicate the greatest consistency.
Pearson correlation assesses the linear relationship between observed
and predicted values.

2.3. EXPLAINABLE machine learning

While ML models are powerful, they often lack interpretability and
explainability [51]. Gini feature importance [52] and SHAP techniques
[40] are commonly used to explain ML models. Gini feature importance,
derived from the Gini impurity, quantifies a feature’s importance by
measuring the total decrease in node impurity, averaged over all trees in
the forest. Features that result in larger decreases in Gini impurity are
considered more important, as they contribute more to the model’s
prediction. Despite its computational efficiency, Gini importance can be
biased toward high-cardinality features and may not capture complex
feature interactions. On the other hand, SHAP value analysis, based on
Shapley values from game theory, is used to explain the ML models both
locally and globally. SHAP value analysis determines the contribution of
each feature to the model’s prediction by treating feature values as
players in a coalition game [53].

At the local level, features with positive SHAP values have a positive
impact on predictions, while those with negative values have a negative
impact. Distribution profiles show how a certain feature influences the
model’s prediction. The magnitude of SHAP values quantifies the
maximum and minimum extents to which a feature can alter the pre-
dicted values. Overall, SHAP values provide a robust framework for
interpreting the model’s behavior, identifying influential features, and
enhancing the transparency of ML predictions.

This model-agnostic approach can be applied to various models,
including linear regression, decision trees, RFs, gradient boosting
models, and NNs. Local SHAP values explain a specific prediction by
attributing contributions to individual features. It can be represented as:

M
8(z) = o + Z #%; €))
=

where g(z') represents the validated ML model output for a simplified
input Z, ¢, is the base value (i.e., the expected model output), z’; € {0, 1}
indicates whether feature j is present or absent in the coalition vector z’,
¢; is the SHAP value for feature j, and M denotes the number of features.
Therefore, a higher magnitude of ¢; shows a greater contribution of
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feature j to the prediction compared to others.

While individual SHAP values provide local explanations for specific
predictions, the global SHAP feature importance analysis aggregates
these local values across multiple instances accordingly. The aggrega-
tion is defined as:

A i )¢(”
! N i=1 )

where I; denotes the global importance of feature j, calculated as the

(2)

average absolute SHAP values across all instances, ¢]@ is the SHAP value

for feature j in instance i, and N is the total number of samples in the
dataset. Features with higher J; values are ranked accordingly.

SHAP values possess key properties including additivity, local ac-
curacy, missingness and consistency. Additivity allows for the inde-
pendent computation and summation of feature contributions. Local
accuracy ensures that SHAP values match the difference between ex-
pected and actual model outputs for given inputs. The missingness
property assigns a zero value to features that are irrelevant or missing,
thereby preventing distortion. Lastly, consistency ensures SHAP values
remain unchanged unless there is a change in contributions of different
features.

Beeswarm SHAP plots are a powerful and informative visualization
tool for SHAP value analysis. They offer a comprehensive view of how
various features influence the model’s decision-making process. A
Beeswarm plot ranks features vertically according to their importance
for the model’s predictions based on their mean absolute SHAP values
across the entire dataset. The most and least important features appear
at the top and bottom of the plot, respectively. For each feature, the data
points (i.e., dots) represent individual instances in the dataset (i.e., a row
in the dataset).

These data points are distributed horizontally along the SHAP value
axis, reflecting a certain range of variation in their contributions to the
predicted outcome. Feature importance is ranked based on the extent of
horizontal distribution. Distribution profiles may appear as a narrow
band (e.g., 1-2 dots thick) or as clusters of vertically stacked dots, rep-
resenting datapoints. A narrow distribution profile indicates that the
feature has a strong and consistent influence on the model’s predictions.
This suggests the model sees the data relevant in this narrow range and
uses them for prediction. If the predicted values are a function of a
specific feature, the distribution profile for that feature will appear as a
narrow line. Clustering and vertical stacking of datapoints with the same
SHAP value, on the other hand, illustrate an insignificant effect on the
predictive capability of the model. This may be due to a high degree of
scatter in the raw data (i.e., high standard deviation of values) or the
lack of a clear relationship between the feature and predicted values. In
such cases, the model does not tend to use features’ values, especially
those that show clustering or a vertically stacked distribution profile
within a specific range when making prediction.

Feature values for each instance (distinct from their SHAP values)
are represented through a color scale. The highest and lowest values for
each feature appear as bright red and blue dots, respectively, on the
color bar of SHAP value plots. Intermediate values appear as different
shades of violet. This color mapping helps distinguish the effect of low
versus high feature values on the model’s prediction. For example, if the
narrow distribution profile is composed mainly of blue dots within a
certain SHAP value range, it implies that the model uses the lower values
of that feature to predict the outcome. The SHAP value axis is divided
into negative and positive regions. If a feature has a positive impact on
the outcome, the datapoints appear on the positive side. Conversely, the
negative side of the axis contains the datapoints for features that nega-
tively impact the outcome. The extent of a feature’s impact, positive or
negative, is indicated by the magnitude of its horizontal spread along the
SHAP axis.
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3. Results and discussions
3.1. Evaluation of models’ prediction accuracy

Fig. 2 (a-h) illustrates the comparison between the measured current
density values and values predicted by different ML algorithms and ANN
and DBN methods. The linear behavior of these plots indicates a high
correlation between predicted and experimental current density values.

Support Vector Regression (SVR), RF, Bagging, CatBoost, XGBoost,
and Histogram-based Gradient Boosting (Hist Gradient Boosting) [55]
demonstrated higher predictive accuracy than other models studied. The
R? values are listed in Table 2. ANN and DBN models effectively capture
the non-linear relationships and complex interactions among input
features. This is important given the dynamic nature of PEFC operation.

Figs. 3(a) and 3(b) show the predictive performance of the models
based on RMSE and nRMSE values, respectively. The mean RMSE across
all models was 0.23 + 0.09. The mean RMSE represents the average
deviation of the predicted and actual current density values as a direct
measure of prediction error. To enable a meaningful comparison among
the models, we normalized the RMSE (resulting in nRMSE) by the
interquartile range (IQR) of the actual current density values from the
experimental dataset. This normalization reduces the impact of outliers.
The mean nRMSE value is 0.097 + 0.049.

Table 2 compares the performance metrics of all ML models (see
Table S.1 for training data set and optimal model parameters in sup-
porting information). Among the models studied, SVR exhibits the
lowest RMSE (0.12), nRMSE (0.06) and the highest R? value (0.99).
These values indicate better predictive accuracy and minimum error for
SVR. SVR also ranks high in terms of correlation, indicating that the
model’s ability in effectively capturing the underlying relationships
between the features and outputs.

The RMSE and nRMSE values for ensemble methods, such as RF and
Bagging were 0.12 and 0.06, and 0.13 and 0.06, respectively. The pre-
dictive accuracy of RF and Bagging closely matches or exceeds that of
SVR based methods, R? = 0.99. The high prediction accuracy of the
ensemble techniques can be attributed to their efficacy for modeling
complex data structures.

The RMSE, nRMSE and R? values for the ANN model were 0.13,
0.061 and 0.99, respectively (see Table S.2). The prediction accuracy for
the ANN model, as estimated by the individual performance metrics,
does not seem to be great. However, it ranks high when all performance
metrics are taken into account. This may be attributed to ANN’s
balanced performance for modeling non-linear relationships.

The RMSE, nRMSE and R? values for the DBN model were 0.16, 0.078
and 0.98, respectively. Both, ANN and DBN models, have correlation
scores of 0.98. Therefore, ANN and DBN are efficient models in terms of
data fitting and uncovering the relationships between features and
predicted values. Effective handling of feature interactions, robustness
against overfitting, and efficient learning of complex patterns are the
key characteristics of ANN and DBN models that make them suitable for
modeling the fuel cell polarization behavior. Specifically, ANN and DBN
benefit from their DL capabilities, which is necessary for understanding
subtle, complex and multilayered interactions among input features.

Both CatBoost and XGBoost, as gradient boosting models, achieved
an RMSE of 0.15 and an R? of 0.985, indicating comparable and high
predictive accuracy. These models are, therefore, suitable for modeling
complex predictive scenarios. The RMSE of 0.17 and an R? of 0.98 for the
histogram-based Gradient Boosting model indicate the model’s capacity
for addressing complex dataset features.

Linear models including Linear Regression, Ridge, Lasso, and Lars,
showed similarly high RMSE and nRMSE values of approximately 0.40
and 0.19, respectively. The R? value for the linear models was approx-
imately 0.9, smaller than that for the other models. Since the polariza-
tion curves are only linear in the intermediate regime, linear models fail
to predict the entire range of polarization data. Among the linear
models, Lasso showed the greatest RMSE value of 0.406, implying the
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method cannot effectively select features in the presence of multiple
correlated parameters, leading to underfitting. The other models stud-
ied, on the other hand, showed unacceptable prediction accuracy.
AdaBoost, despite its high correlation score, showed the highest RMSE
and nRMSE values, 0.31 and 0.15, respectively. These values indicate
substantial average prediction errors. The model’s large MAE value of
0.26 suggests that AdaBoost is not suitable for outlier predictions and
modeling complex, non-linear data complexities.

Due to their superior predictive accuracy and reliability, SVR, RF,
Bagging, XGBoost, CatBoost, and Hist Gradient Boosting were selected
for feature importance analysis. These models employ ensemble and
boosting techniques to effectively capture non-linear relationships and
incorporate regularization to avoid overfitting.

Linear models, such as Linear Regression, Ridge, Lasso, and Lars,
showed similarly high RMSE and nRMSE values of approximately 0.40
and 0.19, respectively. The R? value for the linear models was approx-
imately 0.90, lower than the other models. These models assume linear
relationships between variables, limiting their ability to handle the non-
linear complexities typically present in PEFC data. Among the linear
models, Lasso showed the highest RMSE value (0.41), indicating its
disadvantage in feature selection in the presence of multiple correlated
variables leading to underfitting.

The top performing ML models, SVR, RF, Bagging, XGBoost, Cat-
Boost, and Hist Gradient Boosting, along with ANN and DBN, can greatly
enhance the predictive accuracy and reliability in PEFC systems. These
models can capture non-linear relationships, employ ensemble and
boosting techniques, and incorporate regularization to avoid overfitting.

Specifically, ANN and DBN are notable for their DL capabilities,
which allow for a nuanced understanding of complex, multilayered in-
teractions among input features. Their high R> (ANN: 0.99, DBN: 0.98)
and correlation scores (ANN: 0.98, DBN: 0.98) demonstrate their good
performance in accurately fitting data and revealing underlying re-
lationships between input features and output current density.

Consequently, their sophisticated handling of feature interactions,
robustness against overfitting, and efficient learning of complex patterns
make them invaluable for advancing PEFC applications in the energy
sector.

3.2. Explainable machine learning: feature importance

Fig. 4 (a-d) shows the Gini feature importance ratings, extracted for
the top-performing models including RF, CatBoost, XGBoost, and
LightGBM. The Gini importance, a measure of each feature’s contribu-
tion to the model’s predictive power, consistently identifies voltage as
the most significant feature across all models except LightGBM. Pt
loading and RH show varying levels of importance across different
models.

RF shows a balanced consideration of all features, except ECSA,
indicating its efficacy for leveraging a broad spectrum of interdependent
inputs. For LightGBM, platinum loading was the most significant
feature. This model uses a gradient-based learning technique, focusing
on feature interactions. For CatBoost and XG Boost models, voltage and
RH are the most important features. The algorithms used for these
models are effective for processing categorical and continuous in-
teractions among features.

RH showed a greater importance for XGBoost and LightGBM. For
these models, I:C and Pt:C ratios were less significant than voltage and
platinum loading. However, I:C ratio and Pt:C ratio have a great impact
for RF and CatBoost. ECSA appears to be less important for most models,
except LightGBM. The variation in feature importance may suggest that
an ensemble approach, e.g., integrating insights from multiple models,
may be effective for capturing a broader spectrum of features.

3.3. Explainable machine learning: SHAP values

Fig. 5 (a-d) presents the Beeswarm SHAP value summary plots for the
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Table 2
Comparative performance metrics of various machine learning models for pre-
dicting current density in PEFCs.

Model Test Test Test Test Test
RMSE nRMSE MAE R? Correlation
XGBoost 0.154 0.073 0.105 0.985 0.978
LightGBM 0.195 0.092 0.127 0.977 0.953
Gradient Boost 0.203 0.096 0.145 0.975 0.969
Random Forest 0.125 0.059 0.086 0.990 0.978
Extra Tree 0.170 0.080 0.109 0.982 0.972
Decision Tree 0.170 0.080 0.109 0.982 0.972
AdaBoost 0.315 0.148 0.264 0.939 0.984
CatBoost 0.154 0.073 0.106 0.985 0.974
Linear Regression  0.401 0.189 0.320 0.901 0.957
Ridge 0.401 0.189 0.320 0.901 0.957
Lasso 0.406 0.191 0.327 0.899 0.957
Lars 0.401 0.188 0.323 0.901 0.954
Bagging 0.130 0.061 0.089 0.990 0.978
SVR 0.118 0.056 0.087 0.991 0.979
Hist Gradient 0.168 0.079 0.107 0.983 0.971
Boosting

Stacking 0.174 0.082 0.114 0.981 0.976
ANN 0.129 0.061 0.093 0.989 0.979
DBN 0.165 0.077 0.130 0.981 0.982

top performing models, including SVR, RF, Bagging Regressor, and
CatBoost. There is a strong correlation observed between the SHAP
value and Gini feature importance analysis. Both methods indicate that
voltage has the greatest influence on all models’ predictions. RH ranks as
the second most important feature. While I:C and Pt:C ratios are
important across all models, their rankings differ slightly between the
SVR and other models. Pt loading is ranked higher in importance for the
RF model compared to the SVR model. ECSA is identified as the least
important feature across all models except SVR, where ECSA’s contri-
bution to the overall prediction of current density is negligible. The
consistency observed across different explanatory methods underscores
the reliability of interpretations of feature importance.

Voltage: Voltage has a similar distribution in the SHAP plots for all

models. Generally, the voltage of an electrochemical cell, V., is the

0

equilibrium cell potential E_,;,

minus the sum of all overpotentials:
VC@H = E?ell — Nact — MNohmic — Mmass (3)

where 74, Honmic aNd e Tepresent the activation, ohmic and mass
transport overpotentials, respectively. Generally, polarization curves for
electrochemical cells show three different regimes including activation
regime, intermediate (or ohmic) regime and oxygen depletion regime, as
rationalized and explained in Refs. [11,22].

As the plots in Fig. 5 (a-h) show, close to equilibrium or open circuit
voltage the current density prediction from the voltage shows the
highest level of uncertainty, caused by inaccuracies in voltage mea-
surements and the high sensitivity of the current to the voltage in this
region [56,57]. By moving farther from left to right on the horizontal
axis, the dots representing voltage converge.

In the kinetic regime, the predicted current density is exclusively a
function of voltage, independent of other features. The activation
overpotential, relevant in this regime, is a function of operating tem-
perature, ECSA, exchange current density, jo, and charge transfer coef-
ficient, a. Resistance contributions from ionic and electronic conduction
minimally affect the voltage, and can be ignored in the kinetic regime.
However, for this assumption to be true, values of I:C and Pt:C ratios
must exceed a critical threshold. Specifically, the I:C ratio should be
greater than 20 %, and the Pt loading should be >0.2 mg/cm?.

Moving farther to the right on the horizontal axis, the degree of
vertical stacking increases again. This region coincides with the onset of
the intermediate regime in polarization curves. The vertical scattering of
dots indicates that the model uses features other than voltage to predict
current density. Voltage in the intermediate region is a function of ohmic
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resistances, primarily incurred by the proton transport. In the interme-
diate regime, voltage is strongly dependent on the protonic conductivity
and the thickness of the CCL. The proton conductivity, in turn, is a
function of the liquid saturation, which is influenced by local RH, pore
size distribution, wettability, as well as the dispersion and microstruc-
ture of the ionomer [58]. The electronic conductivity is a function of the
carbon loading (and the type of carbon), Pt:C ratio, I:C ratio and CL
thickness. As the current increases, datapoints converge in the middle of
the intermediate region and diverge again into the oxygen depletion
region.

A cluster of blue dots appears at the end of the positive SHAP value
axis between 1.2 A/cm? and 1.8 A/cm? (SHAP values for SVR in Fig. 5
(b)). This cluster represents the oxygen-depletion regime of polarization
curves. The high fluxes of oxygen and water required in this regime may
cause, in addition to significant voltage losses, reversible or irreversible
structural changes in the transport paths, which depend on the pre-
vailing local conditions and the transient protocol of operating states the
sample has been subdued to. In other words, the repeatability of ex-
periments in the oxygen depletion regime is lower compared to that in
the intermediate region.

Relative humidity: The SHAP value distribution profile for the RH
shows two distinct unicolor regions, either blue or red corresponding to
40 % and 100 % RH, respectively. Switching the RH from 100 % to 40 %
has a negative effect on the predicted current density. The minimum and
maximum of the predicted current density for the SVR model shift to
more negative values by approximately 0.15 A and 0.66 A, respectively.
Positive and negative effects are virtually symmetrical. Other models
show similar SHAP value profiles for RH.

The proton transport resistance in the MEA decreases as the RH in-
creases. Therefore, the effect of RH is expected to be the most pro-
nounced in the intermediate regime of the polarization curve. Vertical
stacking and clustering of dots, observed at both ends of RH bands,
correspond to the kinetic and oxygen depletion regimes. Vertical
stacking is more pronounced for the oxygen depletion regime than that
for the kinetic regime. In the kinetic regime, the current density is small
and the proton transport resistance is not a controlling factor. Therefore,
upon increasing the RH the current density remains stable in the kinetic
regime, as long as the liquid saturation and the ECSA remain relatively
unaffected by the RH. The vertical stacking of dots in the oxygen
depletion regime indicates that the predicted current density is not
significantly affected by the RH, as increased RH (and thus an increased
liquid saturation) will have negligible or negative effect on mass trans-
port. At RH of 100 %, the probability of saturation and flooding in-
creases, exacerbating mass transport limitations.

Ionomer to carbon mass ratio (I:C ratio): In the positive region of
SHAP values, in Fig. 5 (a-d), vertical stacking of blue and red dots in-
dicates that ionomer content is not considered as an important feature
taken into account by the model. In the negative region of SHAP values,
for I:C ratio in the range of 15 and 20 % (indicated by bright blue dots), a
negative effect on the predicted current density is observed. The color
shifting from lighter to darker blue (moving in the positive direction on
SHAP value axis) implies that when I:C ratio < 25 %, the predicted
current density decreases by 0.3 A/cm?>.

Vertical stacking at larger I:C ratio (dark blue dots) reveals that the
current density is independent of I:C ratio, when this ratio exceeds a
certain threshold. This suggests that future research should focus on
determining the I:C ratio threshold value. Levels of the I:C ratio that
exceed an optimal value (here the optimal value is expected to lie in the
range around 30 %) may have an adverse effect on cell performance. An
excessive amount of ionomer can increase the CL thickness, reduce the
porosity of the CL and increase the wettability (and, thus, propensity for
flooding) of the pore space that is needed for gaseous oxygen supply
[58], pushing the polarization curve into the oxygen depletion region at
smaller current density.

Pt:C (mass) ratio: The dataset used in this work contained two, high
and low values for Pt:C ratio, 40 % and 60 %. In Fig. 5 (a-d), vertical
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Fig. 3. a) Root Mean Squared Error (RMSE), and b) Normalized Root Mean Squared Error (nRMSE) for predicted current density values using various machine

learning models.

stacking of blue points in the summary plot for Pt:C ratio of 40 %,
suggests that the data associated with the lower value for this feature
were not considered for all model calculations. Instead, the model fo-
cuses on data with Pt:C ratio of 60 % for prediction. The standard de-
viation of data corresponding to Pt:C ratio of 60 % is smaller than that
for Pt:C ratio of 40 %.

The Pt:C ratio has a great influence on CL thickness for a given value
of platinum loading, due to a large difference between platinum and
carbon densities [41] . Increasing the Pt:C ratio from 40 % to 60 %
decreases the CL thickness by 33 %. Reducing the CL thickness leads to
an increase in proton conductance (and electron conductance). Like-
wise, the pathways for oxygen diffusion become shorter with decreasing
CL thickness, which is beneficial. At Pt:C ratios of 60 % and 40 %,
depending on other features, predicted current density values may in-
crease by 0.3 A/cm? in the voltage range between 0.6 and 0.75 V

Platinum loading: The SHAP summary plots for different models in
Fig. 5 (a-d) show a similar effect for platinum loading. The negative
regions of SHAP value plots for Bagging Regressor and CatBoost reveal a

greater decrease in predicted current density for lower values of plat-
inum loading in comparison with those for SVR and RFs. The maximum
decrease in predicted current density values for minimum platinum
loading was approximately 0.55 A/cm? for Bagging Regressor and Cat-
Boost models.

Distribution of SHAP values suggest that the lower values of Pt
loading (blue dots) negatively affect the predicted current density in
kinetic and intermediate regimes. Higher values (red dots) of platinum
loading show clustering, indicating that the model does not rely on the
higher values of platinum loading. A minimum threshold value for Pt
loading is required to achieve an acceptable performance. Greater
values will make no difference for the current density prediction. This is
consistent with the threshold value reported in the work by Muzaffar et
al., which was found in the range of 0.05-0.1 mg cm [20]. In the ox-
ygen depletion regime, the current density is independent of Pt loading
as indicated by clustering of blue and red dots. Increasing Pt loading
causes an increase in CL thickness, which let oxygen transport losses
grow [20,41]. The reduction in kinetic losses resulting from increased Pt
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Fig. 4. Comparative Gini feature importance values from various machine learning models used for predicting current density in PEFCs. (a) Random Forest, (b)

CatBoost, (c) XGBoost, and (d) LightGBM.

loading is compensated by the increase of ohmic transport losses in the
intermediate regime and overcompensated by the transport losses (due
to oxygen and protons combined) in the oxygen depletion regime.

ECSA: For ECSA, the SHAP summary plots in Fig. 5 (a-d) show points
densely clustered around zero SHAP values. Irrespective of variations in
ECSA values, the impact on the model’s prediction of the current density
is negligible. ECSA is a complex function of volume fractions of Pt, Pt:C
ratio, I:C ratio, and porosity in the CL.

Overall, as demonstrated with this analysis and discussion, explain-
able Al methods can provide valuable information on how different
features affect predicted current density values in different regimes of
PEFC polarization curves. The foregoing discussion exemplifies, how
this analysis could single out certain features as important factors in the
prediction (and thus design) process; however, this discussion is by no
means meant to be comprehensive in this regard. Our discussion reveals
that the feature sensitivity varies significantly, depending on the regime
of a polarization curve that is considered.

If the interpretations reached on the basis of explainable Al methods
are consistent with independent experimental findings, valuable con-
clusions about mechanistic or parametric effects may be drawn from
them. Therefore, the application of such methods will be able to yield
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recommendations for a more focused and more efficient research pro-
cess in designing and optimizing MEAs for PEFCs.

4. Conclusion

This study has demonstrated a robust data-driven framework for
modeling of PEFC polarization behaviour, using various advanced ML
techniques including ensemble methods such as RF, CatBoost and ANN
and DBN models. These models achieved exceptional predictive accu-
racy, with R? values nearing 0.99 and a low RMSE, effectively capturing
the non-linear dynamics of PEFC operation and surpassing the limita-
tions of traditional linear and physics-based models.

By integrating explainable Al tools, such as Gini feature importance
and SHAP value analysis, the study provides deep mechanistic insights
into PEFC performance. SHAP value analysis statistically qualifies and
quantifies the effect of different features and their value ranges on the
model’s predicted current density values.

The results of the detailed feature analysis were interpreted in terms
of the physical phenomena occurring in an MEA in different regimes of
polarization curves. Based on SHAP analysis and Gini feature impor-
tance results, voltage was identified as the most influential feature in
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Fig. 5. Beeswarm SHAP plot for a) SVR, b) Random Forest, c¢) Bagging, and d) CatBoost, illustrating feature impacts with high values in red and low values in blue,

across all features in the top-performing models.

current density prediction models. RH significantly affected proton
transport resistance in the intermediate regime, while platinum loading
and I:C mass ratio revealed optimal thresholds for enhancing efficiency
and durability.

The models’ decisions on using feature values for predicting current
density were found to be realistic and consistent with findings reported
in the literature. These interpretable ML models enable precise identi-
fication of key performance drivers, facilitating targeted improvements
in PEFC design. Integrating fabrication data enhances the linkage be-
tween catalyst characterization and performance outcomes in PEFCs,
revealing how precise manufacturing techniques impact fuel cell effi-
ciency and durability.

Our approach, enhanced by explainable Al tools, is expected to be
able to inform advanced fabrication processes, towards achieving
optimal performance and extended operational life of fuel cells.
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Interpretable ML models, such as those employed, enable precise iden-
tification of key performance drivers, facilitating targeted improve-
ments in PEFC design.

This insight-driven approach, implemented for PEFCs, should be
adaptable to other applications, such as PEM water electrolysis. The
models also lay the foundation for digital twins, enabling real-time
monitoring and optimization of PEFC operation.

Future work could enhance this approach by integrating data-driven
models with physics-based models, merging the computational effi-
ciency of ML with the mechanistic accuracy of physical models to
improve adaptability to dynamic conditions and long-term performance
forecasting. Such a combined approach could enable more effective
adaptation to changing operational conditions and improved long-term
performance forecasting, ultimately maximizing fuel cell lifespan and
efficiency. In addition, future work will include external validation
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using independent datasets to assess the robustness and generalizability
of the proposed framework.
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