001049767 001__ 1049767 001049767 005__ 20251229163326.0 001049767 037__ $$aFZJ-2025-05551 001049767 1001_ $$0P:(DE-Juel1)204237$$aLu, Han$$b0 001049767 1112_ $$aISC High Performance 2025$$cHamburg$$d2025-06-10 - 2025-06-13$$gISC25$$wGermany 001049767 245__ $$aAccelerating Brain Simulations using High Performance Computing 001049767 260__ $$c2025 001049767 3367_ $$033$$2EndNote$$aConference Paper 001049767 3367_ $$2DataCite$$aOther 001049767 3367_ $$2BibTeX$$aINPROCEEDINGS 001049767 3367_ $$2DRIVER$$aconferenceObject 001049767 3367_ $$2ORCID$$aLECTURE_SPEECH 001049767 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1767021475_15178$$xOther 001049767 520__ $$aHigh-performance computing (HPC) has become an indispensable tool for scientific research, enabling the simulation, analysis, and visualization of complex systems across a wide range of disciplines. In neuroscience, HPC empowers researchers to explore the intricate mechanisms of brain functions, from single-cell dynamics to whole-brain network interactions. Our work leverages HPC to model neural dynamics across multiple scales, utilizing state-of-the-art simulation tools. At the microscale, we employ the Arbor simulator to investigate the dynamics of individual neurons, capturing detailed biophysical processes. At the mesoscale, we use the NEST simulator to model large-scale neural networks with synaptic plasticity, shedding light on mechanisms underlying learning and memory. At the macroscale, we utilize The Virtual Brain (TVB) platform to study whole-brain dynamics, providing insights into emergent brain processes by integrating structural and functional dynamics. The platform incorporates a GPU-accelerated framework to alleviate the computational burden associated with exploring large parameter spaces in brain simulations. To further advance our understanding of brain function, we have recently begun integrating these scales through co-simulation approaches. For instance, we have combined NEST and TVB to study interactions between large-scale network activity and whole-brain dynamics. Similarly, Arbor-TVB co-simulations enable us to bridge detailed cellular processes with system-level behavior. These multiscale models provide a more comprehensive understanding of the brain’s fundamental mechanisms, offering new perspectives on both healthy and pathological conditions such as epilepsy and Alzheimer’s disease. A substantial part of our work involves translating neuroscientific models into code that can be efficiently distributed on HPC systems. This requires a strong understanding of both the underlying neuroscience and parallel programming. By presenting our work at ISC 2025, we aim to advance the use of HPC in neuroscience and bring researchers together to tackle pressing challenges, such as memory constraints in large-scale brain simulations. 001049767 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001049767 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x1 001049767 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2 001049767 7001_ $$0P:(DE-Juel1)203512$$aFotiadou, Sinovia$$b1 001049767 7001_ $$0P:(DE-Juel1)172652$$aFrings, Maren$$b2 001049767 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b3 001049767 7001_ $$0P:(DE-Juel1)176815$$aHater, Thorsten$$b4 001049767 7001_ $$0P:(DE-Juel1)204540$$aZossimova, Ekaterina$$b5$$eCorresponding author 001049767 7001_ $$0P:(DE-Juel1)179447$$avan der Vlag, Michiel$$b6$$ufzj 001049767 8564_ $$uhttps://juser.fz-juelich.de/record/1049767/files/ISC2025_poster_scientific_applications.pptx.pdf$$yRestricted 001049767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204237$$aForschungszentrum Jülich$$b0$$kFZJ 001049767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203512$$aForschungszentrum Jülich$$b1$$kFZJ 001049767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172652$$aForschungszentrum Jülich$$b2$$kFZJ 001049767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b3$$kFZJ 001049767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176815$$aForschungszentrum Jülich$$b4$$kFZJ 001049767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204540$$aForschungszentrum Jülich$$b5$$kFZJ 001049767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179447$$aForschungszentrum Jülich$$b6$$kFZJ 001049767 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001049767 9141_ $$y2025 001049767 920__ $$lyes 001049767 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001049767 980__ $$aconf 001049767 980__ $$aEDITORS 001049767 980__ $$aVDBINPRINT 001049767 980__ $$aI:(DE-Juel1)JSC-20090406 001049767 980__ $$aUNRESTRICTED